Inflammation Research

, 58:727 | Cite as

The major inflammatory mediator interleukin-6 and obesity

  • Katalin Eder
  • Noemi Baffy
  • Andras Falus
  • Andras K. Fulop
Review

Abstract

Adipose tissue is one of the main sources of inflammatory mediators, with interleukin-6 (IL-6) among them. Although high systemic levels of inflammatory mediators are cachectogenic and/or anorexic, today it is a widely propagated thesis that in the background of obesity, a low level of chronic inflammation can be found, with IL-6 being one of the many suggested mediators. This paper reviews the studies describing elevated IL-6 levels in obese patients and the role of adipocytes and adipose-tissue macrophages in the production of IL-6. The secretion of IL-6 is regulated by several physiologic or pathologic factors: hormones, cytokines, diet, physical activity, stress, hypoxia, and others. Adipose tissue-derived IL-6 may have an effect on metabolism through several mechanisms, including adipose tissue-specific gene expression, triglyceride release, lipoprotein lipase downregulation, insulin sensitivity, and so on. Having a better understanding of these mechanisms may contribute to the prevention and treatment of obesity.

Keywords

Obesity Interleukin-6 Adipose tissue Inflammation Adipokines 

References

  1. 1.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993;259:87–91.PubMedCrossRefGoogle Scholar
  2. 2.
    Fulop AK, Foldes A, Buzas E, Hegyi K, Miklos IH, Romics L, et al. Hyperleptinemia, visceral adiposity, and decreased glucose tolerance in mice with a targeted disruption of the histidine decarboxylase gene. Endocrinology. 2003;144:4306–14.PubMedCrossRefGoogle Scholar
  3. 3.
    Horvath BV, Falus A, Toth S, Szalai C, Lazar-Molnar E, Holub MC, et al. Inverse regulation of interleukin-6 (IL-6) and IL-6 receptor in histamine deficient histidine decarboxylase-knock-out mice. Immunol Lett. 2002;80:151–4.PubMedCrossRefGoogle Scholar
  4. 4.
    Donaszi-Ivanov A, Scharek P, Falus A, Fulop AK. Hepatic acute-phase reaction in histamine-deficient gene targeted mice. Inflammopharmacology. 2004;12:47–55.PubMedCrossRefGoogle Scholar
  5. 5.
    Langhans W. Anorexia of infection: current prospects. Nutrition. 2000;16:996–1005.PubMedCrossRefGoogle Scholar
  6. 6.
    Inui A. Cytokines and sickness behavior: implications from knockout animal models. Trends Immunol. 2001;22:469–73.PubMedCrossRefGoogle Scholar
  7. 7.
    Negri DR, Mezzanzanica D, Sacco S, Gadina M, Benigni F, Cajola L, et al. Role of cytokines in cancer cachexia in a murine model of intracerebral injection of human tumours. Cytokine. 2001;15:27–38.PubMedCrossRefGoogle Scholar
  8. 8.
    Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, et al. Interleukin-6-deficient mice develop mature-onset obesity. Nat Med. 2002;8:75–9.PubMedCrossRefGoogle Scholar
  9. 9.
    Barton BE, Murphy TF. Cancer cachexia is mediated in part by the induction of IL-6-like cytokines from the spleen. Cytokine. 2001;16:251–7.PubMedCrossRefGoogle Scholar
  10. 10.
    Pou KM, Massaro JM, Hoffmann U, Vasan RS, Maurovich-Horvat P, Larson MG, et al. Visceral and subcutaneous adipose tissue volumes are cross-sectionally related to markers of inflammation and oxidative stress: the Framingham Heart Study. Circulation. 2007;116:1234–41.PubMedCrossRefGoogle Scholar
  11. 11.
    Roytblat L, Rachinsky M, Fisher A, Greemberg L, Shapira Y, Douvdevani A, et al. Raised interleukin-6 levels in obese patients. Obes Res. 2000;8:673–5.PubMedCrossRefGoogle Scholar
  12. 12.
    Vgontzas AN, Papanicolaou DA, Bixler EO, Kales A, Tyson K, Chrousos GP. Elevation of plasma cytokines in disorders of excessive daytime sleepiness: role of sleep disturbance and obesity. J Clin Endocrinol Metab. 1997;82:1313–6.PubMedCrossRefGoogle Scholar
  13. 13.
    Yudkin JS, Stehouwer CD, Emeis JJ, Coppack SW. C-reactive protein in healthy subjects: associations with obesity, insulin resistance, and endothelial dysfunction: a potential role for cytokines originating from adipose tissue? Arterioscler Thromb Vasc Biol. 1999;19:972–8.PubMedGoogle Scholar
  14. 14.
    Das UN. Is obesity an inflammatory condition? Nutrition. 2001;17:953–66.PubMedCrossRefGoogle Scholar
  15. 15.
    Vozarova B, Weyer C, Hanson K, Tataranni PA, Bogardus C, Pratley RE. Circulating interleukin-6 in relation to adiposity, insulin action, and insulin secretion. Obes Res. 2001;9:414–7.PubMedCrossRefGoogle Scholar
  16. 16.
    Viguerie N, Poitou C, Cancello R, Stich V, Clement K, Langin D. Transcriptomics applied to obesity and caloric restriction. Biochimie. 2005;87:117–23.PubMedCrossRefGoogle Scholar
  17. 17.
    Cancello R, Clement K. Is obesity an inflammatory illness? Role of low-grade inflammation and macrophage infiltration in human white adipose tissue. BJOG. 2006;113:1141–7.PubMedCrossRefGoogle Scholar
  18. 18.
    Wu D, Ren Z, Pae M, Guo W, Cui X, Merrill AH, et al. Aging up-regulates expression of inflammatory mediators in mouse adipose tissue. J Immunol. 2007;179:4829–39.PubMedGoogle Scholar
  19. 19.
    Braddon FE, Rodgers B, Wadsworth ME, Davies JM. Onset of obesity in a 36 year birth cohort study. Br Med J (Clin Res Ed). 1986;293:299–303.CrossRefGoogle Scholar
  20. 20.
    Morrill AC, Chinn CD. The obesity epidemic in the United States. J Public Health Policy. 2004;25:353–66.PubMedCrossRefGoogle Scholar
  21. 21.
    Mohamed-Ali V, Pinkney JH, Coppack SW. Adipose tissue as an endocrine and paracrine organ. Int J Obes Relat Metab Disord. 1998;22:1145–58.PubMedCrossRefGoogle Scholar
  22. 22.
    Trayhurn P, Wood IS. Signalling role of adipose tissue: adipokines and inflammation in obesity. Biochem Soc Trans. 2005;33:1078–81.PubMedCrossRefGoogle Scholar
  23. 23.
    Somers W, Stahl M, Seehra JS. 1.9 A crystal structure of interleukin 6: implications for a novel mode of receptor dimerization and signaling. EMBO J. 1997;16:989–97.PubMedCrossRefGoogle Scholar
  24. 24.
    May LT, Ghrayeb J, Santhanam U, Tatter SB, Sthoeger Z, Helfgott DC, et al. Synthesis and secretion of multiple forms of beta 2-interferon/B-cell differentiation factor 2/hepatocyte-stimulating factor by human fibroblasts and monocytes. J Biol Chem. 1988;263:7760–6.PubMedGoogle Scholar
  25. 25.
    May LT, Santhanam U, Tatter SB, Bhardwaj N, Ghrayeb J, Sehgal PB. Phosphorylation of secreted forms of human beta 2-interferon/hepatocyte stimulating factor/interleukin-6. Biochem Biophys Res Commun. 1988;152:1144–50.PubMedCrossRefGoogle Scholar
  26. 26.
    Tilg H, Dinarello CA, Mier JW. IL-6 and APPs: anti-inflammatory and immunosuppressive mediators. Immunol Today. 1997;18:428–32.PubMedCrossRefGoogle Scholar
  27. 27.
    Xing Z, Gauldie J, Cox G, Baumann H, Jordana M, Lei XF, et al. IL-6 is an antiinflammatory cytokine required for controlling local or systemic acute inflammatory responses. J Clin Invest. 1998;101:311–20.PubMedCrossRefGoogle Scholar
  28. 28.
    Gudmundsson A, Ershler WB, Goodman B, Lent SJ, Barczi S, Carnes M. Serum concentrations of interleukin-6 are increased when sampled through an indwelling venous catheter. Clin Chem. 1997;43:2199–201.PubMedGoogle Scholar
  29. 29.
    Mohamed-Ali V, Goodrick S, Rawesh A, Katz DR, Miles JM, Yudkin JS, et al. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-alpha, in vivo. J Clin Endocrinol Metab. 1997;82:4196–200.PubMedCrossRefGoogle Scholar
  30. 30.
    Chan JC, Cheung JC, Stehouwer CD, Emeis JJ, Tong PC, Ko GT, et al. The central roles of obesity-associated dyslipidaemia, endothelial activation and cytokines in the metabolic syndrome—an analysis by structural equation modelling. Int J Obes Relat Metab Disord. 2002;26:994–1008.PubMedCrossRefGoogle Scholar
  31. 31.
    Martin C, Boisson C, Haccoun M, Thomachot L, Mege JL. Patterns of cytokine evolution (tumor necrosis factor-alpha and interleukin-6) after septic shock, hemorrhagic shock, and severe trauma. Crit Care Med. 1997;25:1813–9.PubMedCrossRefGoogle Scholar
  32. 32.
    Fain JN, Madan AK, Hiler ML, Cheema P, Bahouth SW. Comparison of the release of adipokines by adipose tissue, adipose tissue matrix, and adipocytes from visceral and subcutaneous abdominal adipose tissues of obese humans. Endocrinology. 2004;145:2273–82.PubMedCrossRefGoogle Scholar
  33. 33.
    Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK. Preadipocytes mediate lipopolysaccharide-induced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology. 2006;147:5340–51.PubMedCrossRefGoogle Scholar
  34. 34.
    Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116:1793–801.PubMedCrossRefGoogle Scholar
  35. 35.
    Bastard JP, Jardel C, Bruckert E, Blondy P, Capeau J, Laville M, et al. Elevated levels of interleukin 6 are reduced in serum and subcutaneous adipose tissue of obese women after weight loss. J Clin Endocrinol Metab. 2000;85:3338–42.PubMedCrossRefGoogle Scholar
  36. 36.
    Sopasakis VR, Sandqvist M, Gustafson B, Hammarstedt A, Schmelz M, Yang X, et al. High local concentrations and effects on differentiation implicate interleukin-6 as a paracrine regulator. Obes Res. 2004;12:454–60.PubMedCrossRefGoogle Scholar
  37. 37.
    Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid. J Clin Endocrinol Metab. 1998;83:847–50.PubMedCrossRefGoogle Scholar
  38. 38.
    Kern PA, Ranganathan S, Li C, Wood L, Ranganathan G. Adipose tissue tumor necrosis factor and interleukin-6 expression in human obesity and insulin resistance. Am J Physiol Endocrinol Metab. 2001;280:E745–51.PubMedGoogle Scholar
  39. 39.
    Klein B, Zhang XG, Lu ZY, Bataille R. Interleukin-6 in human multiple myeloma. Blood. 1995;85:863–72.PubMedGoogle Scholar
  40. 40.
    Preti HA, Cabanillas F, Talpaz M, Tucker SL, Seymour JF, Kurzrock R. Prognostic value of serum interleukin-6 in diffuse large-cell lymphoma. Ann Intern Med. 1997;127:186–94.PubMedGoogle Scholar
  41. 41.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 2003;112:1796–808.PubMedGoogle Scholar
  42. 42.
    Trayhurn P, Wood IS. Adipokines: inflammation and the pleiotropic role of white adipose tissue. Br J Nutr. 2004;92:347–55.PubMedCrossRefGoogle Scholar
  43. 43.
    Semenza GL. HIF-1 and mechanisms of hypoxia sensing. Curr Opin Cell Biol. 2001;13:167–71.PubMedCrossRefGoogle Scholar
  44. 44.
    Wang B, Wood IS, Trayhurn P. Dysregulation of the expression and secretion of inflammation-related adipokines by hypoxia in human adipocytes. Pflugers Arch. 2007;455:479–92.PubMedCrossRefGoogle Scholar
  45. 45.
    Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, et al. Increased oxidative stress in obesity and its impact on metabolic syndrome. J Clin Invest. 2004;114:1752–61.PubMedGoogle Scholar
  46. 46.
    Lin Y, Berg AH, Iyengar P, Lam TK, Giacca A, Combs TP, et al. The hyperglycemia-induced inflammatory response in adipocytes: the role of reactive oxygen species. J Biol Chem. 2005;280:4617–26.PubMedCrossRefGoogle Scholar
  47. 47.
    Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, et al. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004;306:457–61.PubMedCrossRefGoogle Scholar
  48. 48.
    Ahn KS, Aggarwal BB. Transcription factor NF-kappaB: a sensor for smoke and stress signals. Ann NY Acad Sci. 2005;1056:218–33.PubMedCrossRefGoogle Scholar
  49. 49.
    Black PH. The inflammatory consequences of psychologic stress: relationship to insulin resistance, obesity, atherosclerosis and diabetes mellitus, type II. Med Hypotheses. 2006;67:879–91.PubMedCrossRefGoogle Scholar
  50. 50.
    Ogawa W, Kasuga M. Cell signaling. Fat stress and liver resistance. Science. 2008;322:1483–4.PubMedCrossRefGoogle Scholar
  51. 51.
    Anderson PD, Mehta NN, Wolfe ML, Hinkle CC, Pruscino L, Comiskey LL, et al. Innate immunity modulates adipokines in humans. J Clin Endocrinol Metab. 2007;92:2272–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Pietsch J, Batra A, Stroh T, Fedke I, Glauben R, Okur B, et al. Toll-like receptor expression and response to specific stimulation in adipocytes and preadipocytes: on the role of fat in inflammation. Ann NY Acad Sci. 2006;1072:407–9.PubMedCrossRefGoogle Scholar
  53. 53.
    Batra A, Pietsch J, Fedke I, Glauben R, Okur B, Stroh T, et al. Leptin-dependent toll-like receptor expression and responsiveness in preadipocytes and adipocytes. Am J Pathol. 2007;170:1931–41.PubMedCrossRefGoogle Scholar
  54. 54.
    Fasshauer M, Paschke R. Regulation of adipocytokines and insulin resistance. Diabetologia. 2003;46:1594–603.PubMedCrossRefGoogle Scholar
  55. 55.
    Fantuzzi G. Adipose tissue, adipokines, and inflammation. J Allergy Clin Immunol. 2005;115:911–9. quiz 920.PubMedCrossRefGoogle Scholar
  56. 56.
    Weigert J, Neumeier M, Schaffler A, Fleck M, Scholmerich J, Schutz C, et al. The adiponectin paralog CORS-26 has anti-inflammatory properties and is produced by human monocytic cells. FEBS Lett. 2005;579:5565–70.PubMedGoogle Scholar
  57. 57.
    Naugler WE, Sakurai T, Kim S, Maeda S, Kim K, Elsharkawy AM, et al. Gender disparity in liver cancer due to sex differences in MyD88-dependent IL-6 production. Science. 2007;317:121–4.PubMedCrossRefGoogle Scholar
  58. 58.
    Edwards KM, Mills PJ. Effects of estrogen versus estrogen and progesterone on cortisol and interleukin-6. Maturitas. 2008;61:330–3.PubMedCrossRefGoogle Scholar
  59. 59.
    Giraldo E, Hinchado MD, Garcia JJ, Ortega E. Influence of gender and oral contraceptives intake on innate and inflammatory response. Role of neuroendocrine factors. Mol Cell Biochem. 2008;313:147–53.PubMedCrossRefGoogle Scholar
  60. 60.
    O’Brien SM, Fitzgerald P, Scully P, Landers A, Scott LV, Dinan TG. Impact of gender and menstrual cycle phase on plasma cytokine concentrations. Neuroimmunomodulation. 2007;14:84–90.PubMedCrossRefGoogle Scholar
  61. 61.
    Krogh-Madsen R, Plomgaard P, Keller P, Keller C, Pedersen BK. Insulin stimulates interleukin-6 and tumor necrosis factor-alpha gene expression in human subcutaneous adipose tissue. Am J Physiol Endocrinol Metab. 2004;286:E234–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Vicennati V, Vottero A, Friedman C, Papanicolaou DA. Hormonal regulation of interleukin-6 production in human adipocytes. Int J Obes Relat Metab Disord. 2002;26:905–11.PubMedCrossRefGoogle Scholar
  63. 63.
    Esposito K, Nappo F, Marfella R, Giugliano G, Giugliano F, Ciotola M, et al. Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation. 2002;106:2067–72.PubMedCrossRefGoogle Scholar
  64. 64.
    Oberbach A, Tonjes A, Kloting N, Fasshauer M, Kratzsch J, Busse MW, et al. Effect of a 4 week physical training program on plasma concentrations of inflammatory markers in patients with abnormal glucose tolerance. Eur J Endocrinol. 2006;154:577–85.PubMedCrossRefGoogle Scholar
  65. 65.
    Nicklas BJ, Ambrosius W, Messier SP, Miller GD, Penninx BW, Loeser RF, et al. Diet-induced weight loss, exercise, and chronic inflammation in older, obese adults: a randomized controlled clinical trial. Am J Clin Nutr. 2004;79:544–51.PubMedGoogle Scholar
  66. 66.
    Petersen AM, Pedersen BK. The anti-inflammatory effect of exercise. J Appl Physiol. 2005;98:1154–62.PubMedCrossRefGoogle Scholar
  67. 67.
    Lyngso D, Simonsen L, Bulow J. Interleukin-6 production in human subcutaneous abdominal adipose tissue: the effect of exercise. J Physiol. 2002;543:373–8.PubMedCrossRefGoogle Scholar
  68. 68.
    Laimer M, Ebenbichler CF, Kaser S, Sandhofer A, Weiss H, Nehoda H, et al. Markers of chronic inflammation and obesity: a prospective study on the reversibility of this association in middle-aged women undergoing weight loss by surgical intervention. Int J Obes Relat Metab Disord. 2002;26:659–62.PubMedCrossRefGoogle Scholar
  69. 69.
    Swarbrick MM, Stanhope KL, Austrheim-Smith IT, Van Loan MD, Ali MR, Wolfe BM, et al. Longitudinal changes in pancreatic and adipocyte hormones following Roux-en-Y gastric bypass surgery. Diabetologia. 2008;51:1901–11.PubMedCrossRefGoogle Scholar
  70. 70.
    Lin E, Phillips LS, Ziegler TR, Schmotzer B, Wu K, Gu LH, et al. Increases in adiponectin predict improved liver, but not peripheral, insulin sensitivity in severely obese women during weight loss. Diabetes. 2007;56:735–42.PubMedCrossRefGoogle Scholar
  71. 71.
    Kopp HP, Kopp CW, Festa A, Krzyzanowska K, Kriwanek S, Minar E, et al. Impact of weight loss on inflammatory proteins and their association with the insulin resistance syndrome in morbidly obese patients. Arterioscler Thromb Vasc Biol. 2003;23:1042–7.PubMedCrossRefGoogle Scholar
  72. 72.
    Vazquez LA, Pazos F, Berrazueta JR, Fernandez-Escalante C, Garcia-Unzueta MT, Freijanes J, et al. Effects of changes in body weight and insulin resistance on inflammation and endothelial function in morbid obesity after bariatric surgery. J Clin Endocrinol Metab. 2005;90:316–22.PubMedCrossRefGoogle Scholar
  73. 73.
    Akira S, Taga T, Kishimoto T. Interleukin-6 in biology and medicine. Adv Immunol. 1993;54:1–78.PubMedCrossRefGoogle Scholar
  74. 74.
    van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, et al. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003;88:3005–10.PubMedCrossRefGoogle Scholar
  75. 75.
    Trujillo ME, Sullivan S, Harten I, Schneider SH, Greenberg AS, Fried SK. Interleukin-6 regulates human adipose tissue lipid metabolism and leptin production in vitro. J Clin Endocrinol Metab. 2004;89:5577–82.PubMedCrossRefGoogle Scholar
  76. 76.
    Petersen EW, Carey AL, Sacchetti M, Steinberg GR, Macaulay SL, Febbraio MA, et al. Acute IL-6 treatment increases fatty acid turnover in elderly humans in vivo and in tissue culture in vitro. Am J Physiol Endocrinol Metab. 2005;288:E155–62.PubMedCrossRefGoogle Scholar
  77. 77.
    Peters M, Schirmacher P, Goldschmitt J, Odenthal M, Peschel C, Fattori E, et al. Extramedullary expansion of hematopoietic progenitor cells in interleukin (IL)-6-sIL-6R double transgenic mice. J Exp Med. 1997;185:755–66.PubMedCrossRefGoogle Scholar
  78. 78.
    Di Gregorio GB, Hensley L, Lu T, Ranganathan G, Kern PA. Lipid and carbohydrate metabolism in mice with a targeted mutation in the IL-6 gene: absence of development of age-related obesity. Am J Physiol Endocrinol Metab. 2004;287:E182–7.PubMedCrossRefGoogle Scholar
  79. 79.
    Bruun JM, Lihn AS, Verdich C, Pedersen SB, Toubro S, Astrup A, et al. Regulation of adiponectin by adipose tissue-derived cytokines: in vivo and in vitro investigations in humans. Am J Physiol Endocrinol Metab. 2003;285:E527–33.PubMedGoogle Scholar
  80. 80.
    Simons PJ, van den Pangaart PS, Aerts JM, Boon L. Pro-inflammatory delipidizing cytokines reduce adiponectin secretion from human adipocytes without affecting adiponectin oligomerization. J Endocrinol. 2007;192:289–99.PubMedCrossRefGoogle Scholar
  81. 81.
    Zvonic S, Baugh JE Jr, Arbour-Reily P, Mynatt RL, Stephens JM. Cross-talk among gp130 cytokines in adipocytes. J Biol Chem. 2005;280:33856–63.PubMedCrossRefGoogle Scholar
  82. 82.
    Emilie D, Wijdenes J, Gisselbrecht C, Jarrousse B, Billaud E, Blay JY, et al. Administration of an anti-interleukin-6 monoclonal antibody to patients with acquired immunodeficiency syndrome and lymphoma: effect on lymphoma growth and on B clinical symptoms. Blood. 1994;84:2472–9.PubMedGoogle Scholar
  83. 83.
    van Gameren MM, Willemse PH, Mulder NH, Limburg PC, Groen HJ, Vellenga E, et al. Effects of recombinant human interleukin-6 in cancer patients: a phase I–II study. Blood. 1994;84:1434–41.PubMedGoogle Scholar
  84. 84.
    Givon T, Slavin S, Haran-Ghera N, Michalevicz R, Revel M. Antitumor effects of human recombinant interleukin-6 on acute myeloid leukemia in mice and in cell cultures. Blood. 1992;79:2392–8.PubMedGoogle Scholar
  85. 85.
    Zhang XG, Klein B, Bataille R. Interleukin-6 is a potent myeloma-cell growth factor in patients with aggressive multiple myeloma. Blood. 1989;74:11–3.PubMedGoogle Scholar
  86. 86.
    Trikha M, Corringham R, Klein B, Rossi JF. Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res. 2003;9:4653–65.PubMedGoogle Scholar
  87. 87.
    Nishimoto N, Kanakura Y, Aozasa K, Johkoh T, Nakamura M, Nakano S, et al. Humanized anti-interleukin-6 receptor antibody treatment of multicentric Castleman disease. Blood. 2005;106:2627–32.PubMedCrossRefGoogle Scholar
  88. 88.
    Nishimoto N, Yoshizaki K, Miyasaka N, Yamamoto K, Kawai S, Takeuchi T, et al. Treatment of rheumatoid arthritis with humanized anti-interleukin-6 receptor antibody: a multicenter, double-blind, placebo-controlled trial. Arthritis Rheum. 2004;50:1761–9.PubMedCrossRefGoogle Scholar
  89. 89.
    Genovese MC, McKay JD, Nasonov EL, Mysler EF, da Silva NA, Alecock E, et al. Interleukin-6 receptor inhibition with tocilizumab reduces disease activity in rheumatoid arthritis with inadequate response to disease-modifying antirheumatic drugs: the tocilizumab in combination with traditional disease-modifying antirheumatic drug therapy study. Arthritis Rheum. 2008;58:2968–80.PubMedCrossRefGoogle Scholar
  90. 90.
    Reaven GM. Pathophysiology of insulin resistance in human disease. Physiol Rev. 1995;75:473–86.PubMedGoogle Scholar
  91. 91.
    Festa A, D’Agostino R Jr, Tracy RP, Haffner SM. Elevated levels of acute-phase proteins and plasminogen activator inhibitor-1 predict the development of type 2 diabetes: the insulin resistance atherosclerosis study. Diabetes. 2002;51:1131–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Spranger J, Kroke A, Mohlig M, Hoffmann K, Bergmann MM, Ristow M, et al. Inflammatory cytokines and the risk to develop type 2 diabetes: results of the prospective population-based European Prospective Investigation into Cancer and Nutrition (EPIC)-Potsdam Study. Diabetes. 2003;52:812–7.PubMedCrossRefGoogle Scholar
  93. 93.
    Klover PJ, Zimmers TA, Koniaris LG, Mooney RA. Chronic exposure to interleukin-6 causes hepatic insulin resistance in mice. Diabetes. 2003;52:2784–9.PubMedCrossRefGoogle Scholar
  94. 94.
    Senn JJ, Klover PJ, Nowak IA, Mooney RA. Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes. 2002;51:3391–9.PubMedCrossRefGoogle Scholar
  95. 95.
    Rotter V, Nagaev I, Smith U. Interleukin-6 (IL-6) induces insulin resistance in 3T3–L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpressed in human fat cells from insulin-resistant subjects. J Biol Chem. 2003;278:45777–84.PubMedCrossRefGoogle Scholar
  96. 96.
    Senn JJ, Klover PJ, Nowak IA, Zimmers TA, Koniaris LG, Furlanetto RW, et al. Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. J Biol Chem. 2003;278:13740–6.PubMedCrossRefGoogle Scholar
  97. 97.
    Tsigos C, Papanicolaou DA, Kyrou I, Defensor R, Mitsiadis CS, Chrousos GP. Dose-dependent effects of recombinant human interleukin-6 on glucose regulation. J Clin Endocrinol Metab. 1997;82:4167–70.PubMedCrossRefGoogle Scholar
  98. 98.
    Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF. Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem. 2002;277:1531–7.PubMedCrossRefGoogle Scholar
  99. 99.
    Emanuelli B, Peraldi P, Filloux C, Sawka-Verhelle D, Hilton D, Van Obberghen E. SOCS-3 is an insulin-induced negative regulator of insulin signaling. J Biol Chem. 2000;275:15985–91.PubMedCrossRefGoogle Scholar
  100. 100.
    Sabio G, Das M, Mora A, Zhang Z, Jun JY, Ko HJ, et al. A stress signaling pathway in adipose tissue regulates hepatic insulin resistance. Science. 2008;322:1539–43.PubMedCrossRefGoogle Scholar
  101. 101.
    Mather K, Anderson TJ, Verma S. Insulin action in the vasculature: physiology and pathophysiology. J Vasc Res. 2001;38:415–22.PubMedCrossRefGoogle Scholar
  102. 102.
    Unger RH. Lipotoxicity in the pathogenesis of obesity-dependent NIDDM. Genetic and clinical implications. Diabetes. 1995;44:863–70.PubMedCrossRefGoogle Scholar
  103. 103.
    Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, et al. High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes. 2000;49:1939–45.PubMedCrossRefGoogle Scholar
  104. 104.
    Lau DC, Dhillon B, Yan H, Szmitko PE, Verma S. Adipokines: molecular links between obesity and atheroslcerosis. Am J Physiol Heart Circ Physiol. 2005;288:H2031–41.PubMedCrossRefGoogle Scholar
  105. 105.
    Libby P, Ridker PM, Maseri A. Inflammation and atherosclerosis. Circulation. 2002;105:1135–43.PubMedCrossRefGoogle Scholar
  106. 106.
    Ahima RS. Metabolic actions of adipocyte hormones: focus on adiponectin. Obesity (Silver Spring). 2006;14(Suppl 1):9S–15S.CrossRefGoogle Scholar
  107. 107.
    Norberg M, Stenlund H, Lindahl B, Andersson C, Weinehall L, Hallmans G, et al. Components of metabolic syndrome predicting diabetes: no role of inflammation or dyslipidemia. Obesity (Silver Spring). 2007;15:1875–85.CrossRefGoogle Scholar

Copyright information

© Birkhäuser Verlag, Basel/Switzerland 2009

Authors and Affiliations

  • Katalin Eder
    • 1
  • Noemi Baffy
    • 2
  • Andras Falus
    • 1
    • 2
  • Andras K. Fulop
    • 2
  1. 1.Research Group for Inflammation Biology and ImmunogenomicsHungarian Academy of Sciences and Semmelweis UniversityBudapestHungary
  2. 2.Department of Genetics, Cell and ImmunobiologySemmelweis UniversityBudapestHungary

Personalised recommendations