Skip to main content
Log in

Serial cytokine levels in patients with severe sepsis

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

The serial or dynamic changes of cytokine levels in severely septic patients, between shock and no shock, survivors and non-survivors are still unclear.

Methods

Seventy-six patients with severe sepsis were enrolled to our study. Plasma levels of interferon-γ, interleukin (IL)-6, IL-10, IL-12 and transforming growth factor-β1 from day 1 to day 7 were determined.

Results

IL-6 level in non-survivors was higher than that in survivors on day 1. IL-10 level in non-survivors was higher than that in survivors on day 1, 2, and 3. IL-6 level in shock patients was higher than that in non-shock patients on day 1, 2, 6 and 7. IL-10 level in shock patients was higher than that in non-shock patients from day 1 to day 7. Plasma time-course curves of IL-6 and IL-10 were different between survivors and non-survivors. Plasma time-course curve of IL-6 was different between patients with shock and without shock. Regression analysis found that IL-6 was correlated with IL-10 and shock. IL-10 was correlated with IL-6 and mortality.

Conclusion

IL-6 and IL-10 were the key cytokines in the pathogenesis of severe sepsis. IL-6 was comparatively more associated with septic shock and IL-10 was comparatively more associated with mortality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hotchkiss RS, Karl IE. The pathophysiology and treatment of sepsis. N Engl J Med. 2003;348:138–50.

    Article  PubMed  CAS  Google Scholar 

  2. Arnalich F, Lopez J, Codoceo R, Jim NM, Madero R, Montiel C. Relationship of plasma leptin to plasma cytokines and human survivalin sepsis and septic shock. J Infect Dis. 1999;180:908–11.

    Article  PubMed  CAS  Google Scholar 

  3. Yoshizawa K, Naruto M, Ida N. Injection time of interleukin-6 determines fatal outcome in experimental endotoxin shock. J Interferon Cytokine Res. 1996;16:995–1000.

    PubMed  CAS  Google Scholar 

  4. Kinasewitz GT, Yan SB, Basson B, Comp P, Russell JA, Cariou A, et al. Universal changes in biomarkers of coagulation and inflammation occur in patients with severe sepsis, regardless of causative micro-organism [ISRCTN74215569]. Crit Care. 2004;8:R82–90.

    Article  PubMed  Google Scholar 

  5. Dinarello CA. Proinflammatory cytokines. Chest. 2000;118:503–8.

    Article  PubMed  CAS  Google Scholar 

  6. Maina N, Ngotho JM, Were T, Thuita JK, Mwangangi DM, Kagira JM, et al. Proinflammatory cytokine expression in the early phase of Trypanosoma brucei rhodesiense infection in vervet monkeys (Cercopithecus aethiops). Infect Immun. 2004;72:3063–5.

    Article  PubMed  CAS  Google Scholar 

  7. Rubins JB, Pomeroy C. Role of gamma interferon in the pathogenesis of bacteremic pneumococcal pneumonia. Infect Immun. 1997;65:2975–7.

    PubMed  CAS  Google Scholar 

  8. Watford WT, Moriguchi M, Morinobu A, O’Shea JJ. The biology of IL-12: coordinating innate and adaptive immune responses. Cytokine Growth Factor Rev. 2003;14:361–8.

    Article  PubMed  CAS  Google Scholar 

  9. Ono S, Ueno C, Aosasa S, Tsujimoto H, Seki S, Mochizuki H. Severe sepsis induces deficient interferon-gamma and interleukin-12 production, but interleukin-12 therapy improves survival in peritonitis. Am J Surg. 2001;182:491–7.

    Article  PubMed  CAS  Google Scholar 

  10. Steinhauser ML, Hogaboam CM, Kunkel SL, Lukacs NW, Strieter RM, Standiford TJ. IL-10 is a major mediator of sepsis-induced impairment in lung antibacterial host defense. J Immunol. 1999;162:392–9.

    PubMed  CAS  Google Scholar 

  11. Berg DJ, Kuhn R, Rajewsky K, Muller W, Menon S, Davidson N, et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest. 1995;96:2339–47.

    Article  PubMed  CAS  Google Scholar 

  12. Sablotzki A, Dehne MG, Friedrich I, Grond S, Zickmann B, Muhling J, et al. Different expression of cytokines in survivors and non-survivors from MODS following cardiovascular surgery. Eur J Med Res. 2003;8:71–6.

    PubMed  CAS  Google Scholar 

  13. Monneret G, Finck ME, Venet F, Debard AL, Bohe J, Bienvenu J, et al. The anti-inflammatory response dominates after septic shock: association of low monocyte HLA-DR expression and high interleukin-10 concentration. Immunol Lett. 2004;95:193–8.

    Article  PubMed  CAS  Google Scholar 

  14. Malaguarnera L, Pignatelli S, Simpore J, Malaguarnera M, Musumeci S. Plasma levels of interleukin-12 (IL-12), interleukin-18 (IL-18) and transforming growth factor beta (TGF-beta) in Plasmodium falciparum malaria. Eur Cytokine Netw. 2002;13:425–30.

    PubMed  CAS  Google Scholar 

  15. Lekkou A, Karakantza M, Mouzaki A, Kalfarentzos F, Gogos CA. Cytokine production and monocyte HLA-DR expression as predictors of outcome for patients with community-acquired severe infections. Clin Diagn Lab Immunol. 2004;11:161–7.

    PubMed  CAS  Google Scholar 

  16. Carrol ED, Thomson AP, Jones AP, Jeffers G, Hart CA. A predominantly anti-inflammatory cytokine profile is associated with disease severity in meningococcal sepsis. Intensive Care Med. 2005;31:1415–9.

    Article  PubMed  Google Scholar 

  17. Groeneveld PH, Kwappenberg KM, Langermans JA, Nibbering PH, Curtis L. Relation between pro- and anti-inflammatory cytokines and the production of nitric oxide (NO) in severe sepsis. Cytokine. 1997;9:138–42.

    Article  PubMed  CAS  Google Scholar 

  18. Fernandez-Serrano S, Dorca J, Coromines M, Carratala J, Gudiol F, Manresa F. Molecular inflammatory responses measured in blood of patients with severe community-acquired pneumonia. Clin Diagn Lab Immunol. 2003;10:813–20.

    PubMed  CAS  Google Scholar 

  19. Rivers E, Nguyen B, Havstad S, Ressler J, Muzzin A, Knoblich B, et al. Early goal-directed therapy in the treatment of severe sepsis and septic shock. N Engl J Med. 2001;345:1368–77.

    Article  PubMed  CAS  Google Scholar 

  20. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure—definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204–12.

    Article  PubMed  Google Scholar 

  21. Levy MM, Fink MP, Marshall JC, Abraham E, Angus D, Cook D, et al. 2001 SCCM/ESICM/ACCP/ATS/SIS international sepsis definitions conference. Crit Care Med. 2003;31:1250–6.

    Article  PubMed  Google Scholar 

  22. Knaus WA, Draper EA, Wagner DP, Zimmerman JE. APACHE II: a severity of disease classification system. Crit Care Med. 1985;13:818–29.

    Article  PubMed  CAS  Google Scholar 

  23. Tischendorf JJ, Yagmur E, Scholten D, Vidacek D, Koch A, Winograd R, et al. The interleukin-6 (IL6)−174 G/C promoter genotype is associated with the presence of septic shock and the ex vivo secretion of IL6. Int J Immunogenet. 2007;34:413–8.

    Article  PubMed  CAS  Google Scholar 

  24. Sutherland AM, Walley KR, Manocha S, Russell JA. The association of interleukin 6 haplotype clades with mortality in critically ill adults. Arch Intern Med. 2005;165:75–82.

    Article  PubMed  CAS  Google Scholar 

  25. Bennermo M, Held C, Stemme S, Ericsson CG, Silveira A, Green F, et al. Genetic predisposition of the interleukin-6 response to inflammation: implications for a variety of major diseases? Clin Chem. 2004;50:2136–40.

    Article  PubMed  CAS  Google Scholar 

  26. Fisher CJ Jr, Agosti JM, Opal SM, Lowry SF, Balk RA, Sadoff JC, et al. Treatment of septic shock with the tumor necrosis factor receptor: Fc fusion protein. The soluble TNF Receptor Sepsis Study Group. N Engl J Med. 1996;334:1697–702.

    Article  PubMed  CAS  Google Scholar 

  27. Oberholzer A, Oberholzer C, Moldawer LL. Sepsis syndromes: understanding the role of innate and acquired immunity. Shock. 2001;16:83–96.

    Article  PubMed  CAS  Google Scholar 

  28. Stanilova SA, Miteva LD, Karakolev ZT, Stefanov CS. Interleukin-10-1082 promoter polymorphism in association with cytokine production and sepsis susceptibility. Intensive Care Med. 2006;32:260–6.

    Article  PubMed  CAS  Google Scholar 

  29. Garnacho-Montero J, Bo-Pallas T, Garnacho-Montero C, Cayuela A, Jimenez R, Barroso S, et al. Timing of adequate antibiotic therapy is a greater determinant of outcome than are TNF and IL-10 polymorphisms in patients with sepsis. Crit Care. 2006;10:R111.

    Article  PubMed  Google Scholar 

  30. Russell JA. Management of sepsis. N Engl J Med. 2006;355:1699–713.

    Article  PubMed  CAS  Google Scholar 

  31. Hotchkiss RS, Tinsley KW, Swanson PE, Schmieg RE Jr, Hui JJ, Chang KC, et al. Sepsis-induced apoptosis causes progressive profound depletion of B and CD4+ T lymphocytes in humans. J Immunol. 2001;166:6952–63.

    PubMed  CAS  Google Scholar 

  32. Afzali B, Lombardi G, Lechler RI, Lord GM. The role of T helper 17 (Th17) and regulatory T cells (Treg) in human organ transplantation and autoimmune disease. Clin Exp Immunol. 2007;148:32–46.

    PubMed  CAS  Google Scholar 

  33. Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol. 2007;8:345–50.

    Article  PubMed  CAS  Google Scholar 

  34. Rudge G, Gleeson PA, van DI. Control of immune responses by immunoregulatory T cells. Arch Immunol Ther Exp (Warsz). 2006;54:381–91.

    Article  CAS  Google Scholar 

  35. Monneret G, Debard AL, Venet F, Bohe J, Hequet O, Bienvenu J, et al. Marked elevation of human circulating CD4+ CD25+ regulatory T cells in sepsis-induced immunoparalysis. Crit Care Med. 2003;31:2068–71.

    Article  PubMed  Google Scholar 

  36. Venet F, Pachot A, Debard AL, Bohe J, Bienvenu J, Lepape A, et al. Increased percentage of CD4+ CD25+ regulatory T cells during septic shock is due to the decrease of CD4+. Crit Care Med. 2004;32:2329–31.

    PubMed  Google Scholar 

  37. Bozza FA, Salluh JI, Japiassu AM, Soares M, Assis EF, Gomes RN, et al. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care. 2007;11:R49.

    Article  PubMed  Google Scholar 

  38. Oberholzer A, Souza SM, Tschoeke SK, Oberholzer C, Abouhamze A, Pribble JP, et al. Plasma cytokine measurements augment prognostic scores as indicators of outcome in patients with severe sepsis. Shock. 2005;23:488–93.

    PubMed  CAS  Google Scholar 

  39. Rodriguez-Gaspar M, Santolaria F, Jarque-Lopez A, Gonzalez-Reimers E, Milena A, de l, V et al. Prognostic value of cytokines in SIRS general medical patients. Cytokine 2001;15:232–6.

  40. Dellinger RP, Carlet JM, Masur H, Gerlach H, Calandra T, Cohen J, et al. Surviving sepsis campaign guidelines for management of severe sepsis and septic shock. Crit Care Med. 2004;32:858–73.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank all members of medical and emergent intensive care units for providing clinical assistance. This research was supported by Chang Gung Memorial Hospital under Contract #CMRPG240331.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huang-Pin Wu.

Additional information

Responsible Editor: C. Kasserra.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, HP., Chen, CK., Chung, K. et al. Serial cytokine levels in patients with severe sepsis. Inflamm. Res. 58, 385–393 (2009). https://doi.org/10.1007/s00011-009-0003-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-009-0003-0

Keywords

Navigation