Skip to main content
Log in

Weighted \(L^2\)-norms of Gegenbauer polynomials

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We study integrals of the form

$$\begin{aligned} \int _{-1}^1(C_n^{(\lambda )}(x))^2(1-x)^\alpha (1+x)^\beta {{\,\mathrm{\mathrm {d}}\,}}x, \end{aligned}$$

where \(C_n^{(\lambda )}\) denotes the Gegenbauer-polynomial of index \(\lambda >0\) and \(\alpha ,\beta >-1\). We give exact formulas for the integrals and their generating functions, and obtain asymptotic formulas as \(n\rightarrow \infty \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Alishahi, K., Zamani, M.: The spherical ensemble and uniform distribution of points on the sphere. Electron. J. Probab. 20(23), 27 (2015)

    MathSciNet  MATH  Google Scholar 

  2. Andrews, G.E., Askey, R., Roy, R.: Special Functions. Encyclopedia of Mathematics and its Applications, vol. 71. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  3. Beltrán, C., Ferizović, D.: Approximation to uniform distribution in \(\rm {SO}(3)\). Constr. Approx. 52(2), 283–311 (2020)

    Article  MathSciNet  Google Scholar 

  4. Beltrán, C., Marzo, J., Ortega-Cerdà, J.: Energy and discrepancy of rotationally invariant determinantal point processes in high dimensional spheres. J. Complex. 37, 76–109 (2016)

    Article  MathSciNet  Google Scholar 

  5. Borodachov, S.V., Hardin, D.P., Saff, E.B.: Discrete Energy on Rectifiable Sets. Springer Monographs in Mathematics, Springer, New York (2019)

    Book  Google Scholar 

  6. Brauchart, J.S., Grabner, P.J., Kusner, W.B., Ziefle, J.: Hyperuniform point sets on the sphere: probabilistic aspects. Monatsh. Math. 192, 763–781 (2020)

    Article  MathSciNet  Google Scholar 

  7. Cammarota, V., Marinucci, D.: A quantitative central limit theorem for the Euler–Poincaré characteristic of random spherical eigenfunctions. Ann. Probab. 46(6), 3188–3228 (2018)

    Article  MathSciNet  Google Scholar 

  8. Digital Library of Mathematical Functions. 2021-09-15. National Institute of Standards and Technology from http://dlmf.nist.gov/

  9. Darboux, G.: Mémoire sur l’approximation des fonctions de tres grands nombres, et sur une classe étendue de développements en serie. J. Math. Pures. Appl. 4, 5–56 (1878)

    MATH  Google Scholar 

  10. Darboux, G.: Mémoire sur l’approximation des fonctions de tres grands nombres, et sur une classe étendue de développements en serie. J. Math. Pures. Appl. 4, 377–416 (1878)

    MATH  Google Scholar 

  11. de Bruijn, N.G.: Asymptotic Methods in Analysis. Bibliotheca Mathematica, vol. 4. North-Holland Publishing Co., Amsterdam (1958)

    Google Scholar 

  12. Edmonds, A.R.: Angular Momentum in Quantum Mechanics. Investigations in Physics, vol. 4. Princeton University Press, Princeton (1957)

    Book  Google Scholar 

  13. Ferizović, D.: The \({L}^2\)-norm of Gegenbauer polynomials. Math. Sci. (2021). https://doi.org/10.1007/s40096-021-00398-1

    Article  MathSciNet  Google Scholar 

  14. Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3(2), 216–240 (1990)

    Article  MathSciNet  Google Scholar 

  15. Hough, J.B., Krishnapur, M., Peres, Y., Virág, B.: Zeros of Gaussian Analytic Functions and Determinantal Point Processes. University Lecture Series, vol. 51. American Mathematical Society, Providence (2009)

    MATH  Google Scholar 

  16. Kauers, M., Paule, P.: The Concrete, Tetrahedron. Texts and Monographs in Symbolic Computation. Symbolic Sums. Recurrence Equations, Generating Functions, Asymptotic Estimates. Springer, NewYork (2011)

  17. Laursen, M.L., Mita, K.: Some integrals involving associated Legendre functions and Gegenbauer polynomials. J. Phys. A 14(5), 1065–1068 (1981)

    Article  MathSciNet  Google Scholar 

  18. Luke, Y.L.: The Special Functions and Their Approximations, Mathematics in Science and Engineering, vol. 53, I Academic Press, New York (1969)

    Google Scholar 

  19. Magnus, W., Oberhettinger, F., Soni, R.: Formulas and Theorems for the Special Functions of Mathematical Physics. Springer, Berlin (1966)

    Book  Google Scholar 

  20. Müller, C.: Spherical Harmonics. Lecture Notes in Mathematics, vol. 17. Springer, Berlin (1966)

    Book  Google Scholar 

  21. Paris, R.B., Kaminski, D.: Asymptotics and Mellin-Barnes Integrals. Encyclopedia of Mathematics and its Applications, vol. 85. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  22. Rashid, M.A.: Evaluation of integrals involving powers of \((1-x^2)\) and two associated Legendre functions or Gegenbauer polynomials. J. Phys. A 19(13), 2505–2512 (1986)

    Article  MathSciNet  Google Scholar 

  23. RISC. Computer Algebra for Combinatorics. https://risc.jku.at/software/. Research Institute for Symbolic Computation

  24. Samaddar, S.N.: Some integrals involving associated Legendre functions. Math. Comput. 28, 257–263 (1974)

    Article  MathSciNet  Google Scholar 

  25. Sanchez-Ruiz, J.: Linearization and connection formulae involving squares of Gegenbauer polynomials. Appl. Math. Lett. 14(3), 261–267 (2001)

    Article  MathSciNet  Google Scholar 

  26. Skriganov, M.M.: Stolarsky’s invariance principle for projective spaces II. https://arxiv.org/abs/1912.12335 (2019)

  27. Skriganov, M.M.: Stolarsky’s invariance principle for projective spaces. J. Complex. 56, 101428 (2020)

    Article  MathSciNet  Google Scholar 

  28. Stolarsky, K.B.: Sums of distances between points on a sphere II. Proc. Am. Math. Soc. 41, 575–582 (1973)

    Article  MathSciNet  Google Scholar 

  29. Szegő, G.: Orthogonal Polynomials, vol. 23. American Mathematical Society, Providence (1939)

    MATH  Google Scholar 

  30. Ullah, N.: Evaluation of an integral involving associated Legendre polynomials and inverse powers of \((1-{X}^{2})\). J. Math. Phys. 25(4), 872–873 (1984)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Peter Paule for providing them with his Mathematica package, which implements Zeilberger’s algorithm and allows for transforming differential equations into holonomic linear recurrences for the coefficients. They are also indebted to Helmut Prodinger for pointing out to them that this method could be applied. The authors are grateful to an anonymous referee for her/his valuable comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Grabner.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research was supported by the Austrian Science Fund FWF project F5503 (part of the Special Research Program (SFB) “Quasi-Monte Carlo Methods: Theory and Applications”)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brauchart, J.S., Grabner, P.J. Weighted \(L^2\)-norms of Gegenbauer polynomials. Aequat. Math. 96, 741–762 (2022). https://doi.org/10.1007/s00010-022-00871-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-022-00871-9

Keywords

Mathematics Subject Classification

Navigation