Skip to main content
Log in

Volumetric bounds for intersections of congruent balls in Euclidean spaces

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

We investigate the intersections of balls of radius r, called r-ball bodies, in Euclidean d-space. An r-lense (resp., r-spindle) is the intersection of two balls of radius r (resp., balls of radius r containing a given pair of points). We prove that among r-ball bodies of a given volume, the r-lense (resp., r-spindle) has the smallest inradius (resp., largest circumradius). In general, we upper (resp., lower) bound the intrinsic volumes of r-ball bodies of a given inradius (resp., circumradius). This complements and extends some earlier results on volumetric estimates for r-ball bodies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akopyan, A., Karasev, R.: Kadets-type theorems for partitions of a convex body. Discrete Comput. Geom. 48, 766–776 (2012)

    Article  MathSciNet  Google Scholar 

  2. Bezdek, K., Lángi, Zs., Naszódi, M., Papez, P.: Ball-polyhedra, Discrete Comput. Geom. 38/2, 201–230 (2007)

  3. Bezdek, K., Schneider, R.: Covering large balls with convex sets in spherical space. Beiträge Algebra Geom. 51(1), 229–235 (2010)

    MathSciNet  MATH  Google Scholar 

  4. Bezdek, K.: Lectures on Sphere Arrangements—The Discrete Geometric Side, Fields Institute Monographs, vol. 32. Springer, New York (2013)

    Book  Google Scholar 

  5. Bezdek, K., Naszódi, M.: The Kneser–Poulsen conjecture for special contractions. Discrete Comput. Geom. 60(4), 967–980 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bezdek, K.: From r-dual sets to uniform contractions. Aequationes Math. 92(1), 123–134 (2018)

    Article  MathSciNet  Google Scholar 

  7. Bezdek, K.: On the intrinsic volumes of intersections of congruent balls, Discrete Optim.https://doi.org/10.1016/j.disopt.2019.03.002 (Published online: March 2019), 1–7

  8. Bianchi, G., Gardner, R.J., Gronchi, P.: Symmetrization in geometry. Adv. Math. 306, 51–88 (2017)

    Article  MathSciNet  Google Scholar 

  9. Borisenko, A.A., Drach, K.D.: Isoperimetric inequality for curves with curvature bounded below. Math. Notes 95(5–6), 590–598 (2014)

    Article  MathSciNet  Google Scholar 

  10. Dekster, B.V.: The Jung theorem for spherical and hyperbolic spaces. Acta Math. Hungar. 67(4), 315–331 (1995)

    Article  MathSciNet  Google Scholar 

  11. Fodor, F., Kurusa, Á., Vígh, V.: Inequalities for hyperconvex sets. Adv. Geom. 16(3), 337–348 (2016)

    Article  MathSciNet  Google Scholar 

  12. Gao, F., Hug, D., Schneider, R.: Intrinsic volumes and polar sets in spherical space. Math. Notae 41, 159–176 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Gardner, R.J.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39(3), 355–405 (2002)

    Article  MathSciNet  Google Scholar 

  14. Jahn, T., Martini, H., Richter, C.: Ball convex bodies in Minkowski spaces. Pac. J. Math. 289(2), 287–316 (2017)

    Article  MathSciNet  Google Scholar 

  15. Kadets, V.: Coverings by convex bodies and inscribed balls. Proc. Am. Math. Soc. 133(5), 1491–1495 (2005)

    Article  MathSciNet  Google Scholar 

  16. Kupitz, Y.S., Martini, H., Perles, M.A.: Ball polytopes and the Vázsonyi problem. Acta Math. Hungar. 126(1–2), 99–163 (2010)

    Article  MathSciNet  Google Scholar 

  17. Lángi, Zs., Naszódi, M., Talata, I.: Ball and spindle convexity with respect to a convex body, Aequationes Math. 85/1-2, 41–67 (2013)

  18. Linhart, J.: Kantenlängensumme, mittlere Breite und Umkugelradius konvexer Polytope. Arch. Math. 29(5), 558–560 (1977)

    Article  MathSciNet  Google Scholar 

  19. Martini, H., Richter, C., Spirova, M.: Intersections of balls and sets of constant width in finite-dimensional normed spaces. Mathematika 59(2), 477–492 (2013)

    Article  MathSciNet  Google Scholar 

  20. Paouris, G., Pivovarov, P.: Random ball-polyhedra and inequalities for intrinsic volumes. Monatsh. Math. 182(3), 709–729 (2017)

    Article  MathSciNet  Google Scholar 

  21. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory, Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Károly Bezdek.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Partially supported by a Natural Sciences and Engineering Research Council of Canada Discovery Grant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bezdek, K. Volumetric bounds for intersections of congruent balls in Euclidean spaces. Aequat. Math. 95, 653–665 (2021). https://doi.org/10.1007/s00010-021-00814-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-021-00814-w

Keywords

Mathematics Subject Classification

Navigation