Skip to main content
Log in

On non-monotonicity height of piecewise monotone functions

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Non-monotonicity height is an important index to describe the complexity of dynamics for piecewise monotone functions. Although it is used extensively in the theory of iterative roots, its calculation is still difficult especially in the infinite case. In this paper, by introducing the concept of spanning interval, we first present a sufficient condition for piecewise monotone functions to have height infinity and then an algorithm for finding the spanning intervals is given. We further investigate the density of all piecewise monotone functions with infinite and finite height, respectively, and the results indicate the instability of height. At the end of this paper, the variance of height under composition, especially for functions of height 1 and infinity, are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Addison, P.S.: Fractals and Chaos—An Illustrated Course. Institute of Physics Publishing, Bristol (1997)

    Book  Google Scholar 

  2. Barwell, A.: A characterization of \(\omega \)-limit sets for piecewise monotone maps of the interval. Fundamenta Mathematicae 207, 161–174 (2010)

    Article  MathSciNet  Google Scholar 

  3. Ciepliński, K., Zdun, M.C.: On uniqueness of conjugacy of continuous and piecewise monotone functions. Fixed Point Theory Appl. 2009, 11 (2009). (Article ID 230414)

    Article  MathSciNet  Google Scholar 

  4. Devaney, R.L.: A First Course in Chaotic Dynamical Systems: Theory and Experiment. Westview Press, Boulder (1992)

    MATH  Google Scholar 

  5. Humke, P.D., Laczkovich, M.: The Borel structure of iterates of continuous functions. Proc. Edinb. Math. Soc. 32, 483–494 (1989)

    Article  MathSciNet  Google Scholar 

  6. Humke, P.D., Laczkovich, M.: Approximations of continuous functions by squares. Ergod. Theory Dyn. Syst. 10, 361–366 (1990)

    Article  MathSciNet  Google Scholar 

  7. Jost, J.: Dynamical Systems: Examples of Complex Behaviour. Westview Press, Boulder (1992)

    MATH  Google Scholar 

  8. Katok, A., Hasselblatt, B.: Introduction to The Modern Theory of Dynamical Systems. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  9. Lesniak, Z., Shi, Y.-G.: Topological conjugacy of piecewise monotonic functions of nonmonotonicity height\(\ge 1\). J. Math. Anal. Appl. 423(2), 1792–1803 (2015)

    Article  MathSciNet  Google Scholar 

  10. Li, L., Yang, D., Zhang, W.: A note on iterative roots of PM functions. J. Math. Anal. Appl. 341, 1482–1486 (2008)

    Article  MathSciNet  Google Scholar 

  11. Li, L.: A topological classification for piecewise monotone iterative roots. Aequationes Math. 91, 137–152 (2017)

    Article  MathSciNet  Google Scholar 

  12. Li, T.-Y., York, J.A.: Period three implies chaos. Am. Math. Mon. 82, 985–992 (1975)

    Article  MathSciNet  Google Scholar 

  13. Liu, L., Jarczyk, W., Li, L., Zhang, W.: Iterative roots of piecewise monotonic functions of nonmonotonicity height not less than \(2\). Nonlinear Anal. 75, 286–303 (2012)

    Article  MathSciNet  Google Scholar 

  14. de Melo, W., van Strien, S.: One-Dimensional Dynamics. Springer, Berlin (1992)

    MATH  Google Scholar 

  15. Milnor, J., Thurston, W.: On iterated maps of the interval. In: Dynamical Systems: Proceedings 1986-1987, Lectures Notes in Mathematics Vol. 1342, Springer, Berlin, pp. 465–563 (1988)

  16. Misiurewicz,M., Ziemian, K.: Horseshoes and entropy for piecewise continuous piecewise monotone maps. In: From Phase Transitions to Chaos. World Scientific, Singapore, pp. 489–500 (1992)

  17. Shi, Y.: Iterative roots with circuits for piecewise continuous and globally periodic maps. Topol. Appl. 159(10–11), 2721–2727 (2012)

    Article  MathSciNet  Google Scholar 

  18. Smale, S.: Differentiable dynamical systems. Bull. AMS 73, 747–817 (1967)

    Article  MathSciNet  Google Scholar 

  19. Simon, K.: The set of second iterates is nowhere dense in \(C\). Proc. Am. Math. Soc. 111, 1141–1150 (1991)

    MathSciNet  MATH  Google Scholar 

  20. Yu, Z., Zhang, W.: Forts of quadratic polynomials under iteration. J. Comput. Appl. Math. 331, 1–10 (2018)

    Article  MathSciNet  Google Scholar 

  21. Zhang, J., Yang, L.: Discussion on iterative roots of piecewise monotone functions. Chin. Acta Math. Sin. 26, 398–412 (1983)

    MATH  Google Scholar 

  22. Zhang, W.: PM functions, their characteristic intervals and iterative roots. Ann. Polon. Math. 65, 119–128 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to the reviewers for their carefully checking and helpful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work is supported by Zhejiang Provincial Natural Science Foundation of China under Grant #LY18A010017, the National Science Foundation of China Grants #11501394, #12026207, the Science Research Fund of Sichuan Provincial Education Department #15ZB0041 and funding of School of Mathematical Sciences and V.C. & V.R. Key Lab of Sichuan Province.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Li, L. On non-monotonicity height of piecewise monotone functions. Aequat. Math. 95, 401–414 (2021). https://doi.org/10.1007/s00010-021-00796-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-021-00796-9

Keywords

Mathematics Subject Classification

Navigation