Skip to main content
Log in

M-affine functions composing Sturm–Liouville families

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Given an n-variable mean M defined on a real interval I, an M-affine function is a solution to the functional equation

When M is a quasilinear mean, the set of continuous M-affine functions is a Sturm–Liouville family on every compact interval \(\left[ a,b\right] \subseteq I\); i.e., for every \(\alpha ,\beta \in \left[ a,b\right] \), there exists an M-affine function f such that \(f\left( a\right) =\alpha \) and \( f\left( b\right) =\beta \). The validity of the converse statement is explored in this paper and several consequences are derived from this study. New characterizations of quasilinear means and the solution to Eq. (1) under suitable conditions are among the more important ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J.: Lectures on Functional Equations and their Applications. Academic Press, New York (1966)

    MATH  Google Scholar 

  2. Aczél, J., Dhombres, J.: Functional Equations in Several Variables. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  3. Berrone, L.R.: A dynamical characterization of quasilinear means. Aequationes Math. 84(1), 51–70 (2012)

    Article  MathSciNet  Google Scholar 

  4. Berrone, L.R., Lombardi, A.L.: A note on equivalence of means. Publ. Math. Debrecen 58, Fasc. 1–2, 49–56 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Berrone, L.R., Sbérgamo, G.E.: La familia de bases de una media continua y la representación de las medias cuasiaritm éticas. Bol. de la Soc. Venezolana de Matemática XIX(1), 3–18 (2012)

    Google Scholar 

  6. Berrone, L.R., Sbérgamo, G.E.: Aczél’s iterations for discontinuous or non strict means. J. Anal. 25(1), 1–27 (2017). https://doi.org/10.1007/s41478-016-0008-3

    Article  MathSciNet  MATH  Google Scholar 

  7. Borwein, J.M., Borwein, P.B.: Pi and the AGM. Wiley, New York (1987)

    MATH  Google Scholar 

  8. Bullen, P.S.: Handbook of Means and Their Inequalities. Kluwer Academic Publishers, Dordrecht (2010)

    MATH  Google Scholar 

  9. Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and Their Inequalities. D. Reidel Publishing Company, Dordrecht (1988)

    Book  Google Scholar 

  10. Dhombres, J.G.: Some recent applications of functional equations. In: Aczél, J. (ed.) Functional Equations: History, Applications and Theory, pp. 67–91. D. Reidel, Dordrecht (1984)

    Chapter  Google Scholar 

  11. Ger, R., Kochanek, T.: An inconsistency equation involving means. Colloq. Math. 115(1), 87–99 (2009)

    Article  MathSciNet  Google Scholar 

  12. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  13. Kruse, R.L., Deely, J.J.: Joint continuity of monotonic functions. Am. Math. Mon. 76(1), 74–76 (1969)

    Article  MathSciNet  Google Scholar 

  14. Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities, 2nd edn. Birkhäuser, Basel (2009)

    Book  Google Scholar 

  15. Ling, C.H.: Representation of associative functions. Publ. Math. Debrecen 12, Fasc. 1–4, 189–212 (1965)

    MathSciNet  MATH  Google Scholar 

  16. Marichal, J.-L.: On the associativity functional equation. Fuzzy Sets Syst. 114(3), 381–389 (2000)

    Article  MathSciNet  Google Scholar 

  17. Matkowski, J.: Convex functions with respect to a mean and a characterization of quasi-arithmetic means. Real Anal. Exchange, Vol. 29 (1), 2003/2004, 229–246

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio R. Berrone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrone, L.R., Sbérgamo, G.E. M-affine functions composing Sturm–Liouville families. Aequat. Math. 92, 873–910 (2018). https://doi.org/10.1007/s00010-018-0588-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-018-0588-x

Mathematics Subject Classification

Navigation