Skip to main content
Log in

A comprehensive study of \({\varvec{r}}\)-Dowling polynomials

Aequationes mathematicae Aims and scope Submit manuscript

Cite this article

Abstract

After his extensive study of Whitney numbers, Benoumhani introduced Dowling numbers and polynomials as generalizations of the well-known Bell numbers and polynomials. Later, Cheon and Jung gave the r-generalization of these notions. Based on our recent combinatorial interpretation of r-Whitney numbers, in this paper we derive several new properties of r-Dowling polynomials and we present alternative proofs of some previously known ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Benoumhani, M.: On Whitney numbers of Dowling lattices. Discrete Math. 159, 13–33 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  2. Benoumhani, M.: On some numbers related to Whitney numbers of Dowling lattices. Adv. Appl. Math. 19, 106–116 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Broder, A.Z.: The \(r\)-Stirling numbers. Discrete Math. 49, 241–259 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  4. Carlitz, L.: Weighted Stirling numbers of the first and second kind I. Fibonacci Q. 18, 147–162 (1980)

    MathSciNet  MATH  Google Scholar 

  5. Cheon, G.-S., Jung, J.-H.: \(r\)-Whitney numbers of Dowling lattices. Discrete Math. 312, 2337–2348 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Corcino, R.B., Corcino, C.B.: On generalized Bell polynomials. Discrete Dyn. Nat. Soc., Article 623456 (2011)

  7. Corcino, R.B., Corcino, C.B., Aldema, R.: Asymptotic normality of the \((r,\beta )\)-Stirling numbers. Ars Combin. 81, 81–96 (2006)

    MathSciNet  MATH  Google Scholar 

  8. Davenport, H., Pólya, G.: On the product of two power series. Can. J. Math. 1, 1–5 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dowling, T.A.: A class of geometric lattices based on finite groups. J. Comb. Theory Ser. B 14, 61–86 (1973); erratum, 15, 211 (1973)

  10. Gyimesi, E., Nyul, G.: New combinatorial interpretations of \(r\)-Whitney and \(r\)-Whitney-Lah numbers. Submitted

  11. Hsu, L.C., Shiue, P.J.-S.: A unified approach to generalized Stirling numbers. Adv. Appl. Math. 20, 366–384 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  12. Liu, L.L., Wang, Y.: On the log-convexity of combinatorial sequences. Adv. Appl. Math. 39, 453–476 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Mangontarum, M.M., Macodi-Ringia, A. P., Abdulcarim, N. S.: The translated Dowling polynomials and numbers. Int. Sch. Res. Not., Article 678408 (2014)

  14. Merris, R.: The \(p\)-Stirling numbers. Turkish J. Math. 24, 379–399 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Mező, I.: A new formula for the Bernoulli polynomials. Results Math. 58, 329–335 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mező, I.: The \(r\)-Bell numbers, J. Integer. Seq. 14, Article 11.1.1 (2011)

  17. Mező, I.: A kind of Eulerian numbers connected to Whitney numbers of Dowling lattices. Discrete Math. 328, 88–95 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  18. Mihoubi, M., Rahmani, M.: The partial \(r\)-Bell polynomials. arXiv:1308.0863

  19. Rahmani, M.: Some results on Whitney numbers of Dowling lattices. Arab J. Math. Sci. 20, 11–27 (2014)

    MathSciNet  MATH  Google Scholar 

  20. Remmel, J.B., Wachs, M.L.: Rook theory, generalized Stirling numbers and \((p, q)\)-analogues. Electron. J. Comb. 11/1, R84 (2004)

    MathSciNet  MATH  Google Scholar 

  21. Wang, D.G.L.: On colored set partitions of type \(B_{n}\). Cent. Eur. J. Math. 12, 1372–1381 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gábor Nyul.

Additional information

Research was supported by Grant 115479 from the Hungarian Scientific Research Fund, and by the ÚNKP-17-4 New National Excellence Program of the Ministry of Human Capacities.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gyimesi, E., Nyul, G. A comprehensive study of \({\varvec{r}}\)-Dowling polynomials. Aequat. Math. 92, 515–527 (2018). https://doi.org/10.1007/s00010-017-0538-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-017-0538-z

Keywords

Mathematics Subject Classification

Navigation