Fringe analysis of plane trees related to cutting and pruning

Abstract

Rooted plane trees are reduced by four different operations on the fringe. The number of surviving nodes after reducing the tree repeatedly for a fixed number of times is asymptotically analyzed. The four different operations include cutting all or only the leftmost leaves or maximal paths. This generalizes the concept of pruning a tree. The results include exact expressions and asymptotic expansions for the expected value and the variance as well as central limit theorems.

References

  1. 1.

    Callan, D.: Kreweras’s Narayana number identity has a simple Dyck path interpretation (2012). arXiv:1203.3999 [math.CO]

  2. 2.

    Chen, W.Y.C., Deutsch, E., Elizalde, S.: Old and young leaves on plane trees. Eur. J. Combin. 27(3), 414–427 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    de Bruijn, N.G., Knuth, D.E., Rice, S.O.: The Average Height of Planted Plane Trees. Graph theory and computing, pp. 15–22. Academic Press, New York (1972)

    Google Scholar 

  4. 4.

    de Chaumont, M.V.: Nombre de Strahler des arbres, languages algébrique et dénombrement de structures secondaires en biologie moléculaire. Doctoral thesis, Université de Bordeaux I (1985)

  5. 5.

    Drmota, M.: Random Trees. Springer, Wien (2009)

    Google Scholar 

  6. 6.

    Drmota, M.: Trees, Handbook of Enumerative Combinatorics, Discrete Mathematics and Applications, pp. 281–334. CRC Press, Boca Raton (2015)

    Google Scholar 

  7. 7.

    Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees. J. Comput. Syst. Sci. 25(2), 171–213 (1982)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Flajolet, P., Odlyzko, A.: Singularity analysis of generating functions. SIAM J. Discrete Math. 3, 216–240 (1990)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Flajolet, P., Raoult, J.-C., Vuillemin, J.: The number of registers required for evaluating arithmetic expressions. Theor. Comput. Sci. 9(1), 99–125 (1979)

    MathSciNet  Article  MATH  Google Scholar 

  10. 10.

    Flajolet, P., Sedgewick, R.: Analytic Combinatorics. Cambridge University Press, Cambridge (2009)

    Google Scholar 

  11. 11.

    Hackl, B., Heuberger, C., Prodinger, H.: Reductions of binary trees and lattice paths induced by the register function (2016). https://doi.org/10.1016/j.tcs.2017.09.015

  12. 12.

    Hackl, B., Kropf, S., Prodinger, H.: Iterative cutting and pruning of planar trees. In: Proceedings of the Fourteenth Workshop on Analytic Algorithmics and Combinatorics (ANALCO) (Philadelphia PA), SIAM, pp. 66–72 (2017)

  13. 13.

    Heuberger, C., Kropf, S.: Higher dimensional quasi-power theorem and Berry–Esseen inequality (2016). arXiv:1609.09599 [math.PR]

  14. 14.

    Hwang, H.-K.: On convergence rates in the central limit theorems for combinatorial structures. Eur. J. Combin. 19, 329–343 (1998)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Janson, S.: Random cutting and records in deterministic and random trees. Random Struct. Algorithms 29(2), 139–179 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Janson, S.: Asymptotic normality of fringe subtrees and additive functionals in conditioned Galton–Watson trees. Random Struct. Algorithms 48(1), 57–101 (2016)

    MathSciNet  Article  MATH  Google Scholar 

  17. 17.

    Kemp, R.: A note on the stack size of regularly distributed binary trees. BIT 20(2), 157–162 (1980)

    MathSciNet  Article  MATH  Google Scholar 

  18. 18.

    Kirschenhofer, P., Prodinger, H.: Further results on digital search trees. Theor. Comput. Sci. 58(1–3), 143–154 (1988). (Thirteenth International Colloquium on Automata, Languages and Programming (Rennes, 1986))

    MathSciNet  Article  MATH  Google Scholar 

  19. 19.

    Meir, A., Moon, J.W.: Cutting down random trees. J. Aust. Math. Soc. 11, 313–324 (1970)

    MathSciNet  Article  MATH  Google Scholar 

  20. 20.

    NIST Digital library of mathematical functions. http://dlmf.nist.gov/, Release 1.0.13 of 2016-09-16, 2016, Olver, F.W.J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.I., Boisvert, R.F., Clark, C.W., Miller, B.R., Saunders, B.V. eds

  21. 21.

    Panholzer, A.: Cutting down very simple trees. Quaest. Math. 29(2), 211–227 (2006)

    MathSciNet  Article  MATH  Google Scholar 

  22. 22.

    Prodinger, H.: The height of planted plane trees revisited. Ars Combin. 16(B), 51–55 (1983)

    MathSciNet  MATH  Google Scholar 

  23. 23.

    The SageMath Developers: SageMath Mathematics Software (Version 7.4) (2016). http://www.sagemath.org

  24. 24.

    Viennot, X.G.: A Strahler bijection between Dyck paths and planar trees. Discrete Math. 246(1–3), 317–329 (2002). (Formal Power Series and Algebraic Combinatorics (1999))

    MathSciNet  Article  MATH  Google Scholar 

  25. 25.

    Wagner, S.: Central limit theorems for additive tree parameters with small toll functions. Combin. Probab. Comput. 24, 329–353 (2015)

    MathSciNet  Article  MATH  Google Scholar 

  26. 26.

    Whittaker, E.T., Watson, G.N.: A Course of Modern Analysis. Cambridge University Press, Cambridge (1996). (Reprint of the fourth (1927) edition)

    Google Scholar 

  27. 27.

    Zeilberger, D.: A bijection from ordered trees to binary trees that sends the pruning order to the Strahler number. Discrete Math. 82(1), 89–92 (1990)

    MathSciNet  Article  MATH  Google Scholar 

Download references

Acknowledgements

Open access funding provided by University of Klagenfurt

Author information

Affiliations

Authors

Corresponding author

Correspondence to Benjamin Hackl.

Additional information

Benjamin Hackl and Clemens Heuberger are supported by the Austrian Science Fund (FWF): P 24644-N26 and by the Karl Popper Kolleg “Modeling-Simulation-Optimization” funded by the Alpen-Adria-Universität Klagenfurt and by the Carinthian Economic Promotion Fund (KWF). Helmut Prodinger is supported by an incentive grant of the National Research Foundation of South Africa. Part of this author’s work was done while he visited Academia Sinica. He thanks the Institute of Statistical Science for its hospitality.

This is the full version of the extended abstract [12].

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hackl, B., Heuberger, C., Kropf, S. et al. Fringe analysis of plane trees related to cutting and pruning. Aequat. Math. 92, 311–353 (2018). https://doi.org/10.1007/s00010-017-0529-0

Download citation

Mathematics Subject Classification

  • 05A16
  • 05C05
  • 05A15
  • 05A19
  • 60C05

Keywords

  • Plane trees
  • Pruning
  • Tree reductions
  • Central limit theorem
  • Narayana polynomials