Skip to main content
Log in

Reducible means and reducible inequalities

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

It is well-known that if a real valued function acting on a convex set satisfies the n-variable Jensen inequality, for some natural number \(n\ge 2\), then, for all \(k\in \{1,\dots , n\}\), it fulfills the k-variable Jensen inequality as well. In other words, the arithmetic mean and the Jensen inequality (as a convexity property) are both reducible. Motivated by this phenomenon, we investigate this property concerning more general means and convexity notions. We introduce a wide class of means which generalize the well-known means for arbitrary linear spaces and enjoy a so-called reducibility property. Finally, we give a sufficient condition for the reducibility of the (MN)-convexity property of functions and also for Hölder–Minkowski type inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél, J., Daróczy, Z.: Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind. Publ. Math. Debrecen 10, 171–190 (1963)

    MathSciNet  MATH  Google Scholar 

  2. Bajraktarević, M.: Sur une équation fonctionnelle aux valeurs moyennes. Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 13, 243–248 (1958)

    MATH  Google Scholar 

  3. Bajraktarević, M.: Sur une généralisation des moyennes quasilinéaires. Publ. Inst. Math. (Beograd) (N.S.) 3(17), 69–76 (1963)

    MathSciNet  MATH  Google Scholar 

  4. Beckenbach, E.F., Bellman, R.: Inequalities. Springer-Verlag, Berlin (1961)

    Book  MATH  Google Scholar 

  5. Bullen, P.S.: Handbook of means and their inequalities. Mathematics and its Applications, vol. 560. Kluwer Academic Publishers Group, Dordrecht (2003)

  6. Bullen, P.S., Mitrinović, D.S., Vasić, P.M.: Means and their inequalities. Mathematics and its Applications (East European Series), vol. 31 . D. Reidel Publishing Co., Dordrecht. Translated and revised from the Serbo-Croatian (1988)

  7. Chang, K-Ch.: Methods in nonlinear analysis. Springer Monographs in Mathematics. Springer-Verlag, Berlin (2005)

    Google Scholar 

  8. Clarke, F.: Functional analysis, calculus of variations and optimal control. Graduate Texts in Mathematics, vol. 264. Springer, London (2013)

  9. Daróczy, Z.: A general inequality for means. Aequationes Math. 7(1), 16–21 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  10. Daróczy, Z.: Über eine Klasse von Mittelwerten. Publ. Math. Debrecen 19, 211–217 (1973)

    MATH  Google Scholar 

  11. Daróczy, Z.: Losonczi, L.: Über den Vergleich von Mittelwerten. Publ. Math. Debrecen 17, 289–297 (1971)

    MATH  Google Scholar 

  12. Daróczy, Z., Páles, Zs: On comparison of mean values. Publ. Math. Debrecen 29(1–2), 107–115 (1982)

    MathSciNet  MATH  Google Scholar 

  13. Daróczy, Z., Páles, Zs.: Multiplicative mean values and entropies. In: Functions, series, operators, vol. I, II (Budapest, 1980), pp. 343–359. North-Holland, Amsterdam (1983)

  14. Gini, C.: Di una formula compressiva delle medie. Metron 13, 3–22 (1938)

    MathSciNet  MATH  Google Scholar 

  15. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities, 1st edn. Cambridge University Press, Cambridge (1934)

  16. Jensen, J .L.W .V.: Om konvekse funktioner og uligheder imellem middelvaerdier. Nyt. Tideskrift for Mathematik 16 B, 49–69 (1905)

    MATH  Google Scholar 

  17. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégualités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)

    Article  MathSciNet  MATH  Google Scholar 

  18. Kuczma, M.: An introduction to the theory of functional equations and inequalities. Cauchy’s equation and Jensen’s inequality. With a Polish summary. Prace Naukowe Uniwersytetu Śląskiego w Katowicach [Scientific Publications of the University of Silesia], 489. Uniwersytet Śląski, Katowice; Państwowe Wydawnictwo Naukowe (PWN), Warsaw (1985)

  19. Losonczi, L.: Subadditive Mittelwerte. Arch. Math. (Basel) 22, 168–174 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  20. Losonczi, L.: Subhomogene Mittelwerte. Acta Math. Acad. Sci. Hung. 22, 187–195 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  21. Losonczi, L.: Über eine neue Klasse von Mittelwerten. Acta Sci. Math. (Szeged) 32, 71–81 (1971)

    MathSciNet  MATH  Google Scholar 

  22. Losonczi, L.: General inequalities for nonsymmetric means. Aequationes Math. 9, 221–235 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matkowski, J.: Generalized weighted and quasi-arithmetic means. Aequationes Math. 79(3), 203–212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matkowski, J., Páles, Zs: Characterization of generalized quasi-arithmetic means. Acta Sci. Math. (Szeged) 81(3–4), 447–456 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  25. Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Classical and new inequalities in analysis. Mathematics and its Applications (East European Series), vol. 61. Kluwer Academic Publishers Group, Dordrecht (1993)

  26. Páles, Zs: Characterization of quasideviation means. Acta Math. Acad. Sci. Hung. 40(3–4), 243–260 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  27. Páles, Zs.: Inequalities for homogeneous means depending on two parameters. In: Beckenbach, E.F. Walter, W. (eds.) General Inequalities, 3 (Oberwolfach, 1981). International Series of Numerical Mathematics, vol. 64, pp. 107–122. Birkhäuser, Basel (1983)

  28. Páles, Zs.: Inequalities for comparison of means. In: Walter, W. (ed.) General Inequalities, 4 (Oberwolfach, 1983). International Series of Numerical Mathematics, vol. 71 , pp. 59–73. Birkhäuser, Basel (1984)

  29. Páles, Zs: On the characterization of means defined on a linear space. Publ. Math. Debrecen 31(1–2), 19–27 (1984)

    MathSciNet  MATH  Google Scholar 

  30. Páles, Zs: Ingham Jessen’s inequality for deviation means. Acta Sci. Math. (Szeged) 49(1–4), 131–142 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Páles, Zs: On the characterization of quasi-arithmetic means with weight function. Aequationes Math 32(2–3), 171–194 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  32. Páles, Zs: General inequalities for quasideviation means. Aequationes Math 36(1), 32–56 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  33. Páles, Zs: On a Pexider-type functional equation for quasideviation means. Acta Math. Hung. 51(1–2), 205–224 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  34. Páles, Zs: On homogeneous quasideviation means. Aequationes Math. 36(2–3), 132–152 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  35. Páles, Zs, Zeidan, V.: Infinite dimensional generalized Jacobian: properties and calculus rules. J. Math. Anal. Appl. 344(1), 55–75 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  36. Roberts, A.W., Varberg, D.E.: Convex Functions. Pure and Applied Mathematics, vol. 57. Academic, New York (1973)

  37. Zeidler, E.: Nonlinear functional analysis and its applications. IV. Springer-Verlag, New York, Applications to mathematical physics, Translated from the German and with a preface by Juergen Quandt (1988)

  38. Zǎlinescu, C.: Convex Analysis in General Vector Spaces. World Scientific Publishing Co., Inc., River Edge (2002)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zsolt Páles.

Additional information

The research of the first author has been supported through the New National Excellence Program of the Ministry of Human Capacities. The research of the second author has been supported by the Hungarian Scientific Research Fund (OTKA) Grant K111651.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kiss, T., Páles, Z. Reducible means and reducible inequalities. Aequat. Math. 91, 505–525 (2017). https://doi.org/10.1007/s00010-016-0459-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-016-0459-2

Mathematics Subject Classification

Keywords

Navigation