Skip to main content

A composite functional equation on groups


We analyse the composite functional equation \(f(x+2f(y))=f(x)+y+f(y)\) on certain groups. In particular we give a description of solutions on abelian 3-groups and finitely generated free abelian groups. This is motivated by a work of Pál Burai, Attila Házy and Tibor Juhász, who described the solutions of the equation on uniquely 3-divisible abelian groups.

This is a preview of subscription content, access via your institution.


  1. Boros, Z., Daróczy, Z.: A composite functional equation with additive solutions. Publ. Math. Debrecen 69(1–2), 245–253 (2006)

    MathSciNet  MATH  Google Scholar 

  2. Burai, P., Házy, A., Juhász, T.: A composite functional equation from algebraic aspect. Aequationes Math. 86, 57–64 (2013)

    MathSciNet  Article  MATH  Google Scholar 

  3. Chao, W.W.: Problems and solutions: problems: 10854. Am. Math. Mon. 108(2), 171 (2001)

    MathSciNet  Article  Google Scholar 

  4. Chao, W.W., Henderson, D.: Continuous additive functions: 10854. Am. Math. Mon. 111(8), 725–726 (2004)

    Article  Google Scholar 

  5. Fuchs, L.: Abelian Groups. Publishing House of the Hungarian Academy of Sciences, Budapest (1958)

    MATH  Google Scholar 

  6. Griffin, H.: Elementary Theory of Numbers. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  7. Kurzweil, H., Stellmacher, B.: The Theory of Finite Groups. Springer, New York (2004)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Imke Toborg.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Toborg, I. A composite functional equation on groups. Aequat. Math. 91, 289–299 (2017).

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI:

Mathematics Subject Classification

  • 20K10
  • 20K15
  • 20D45
  • 39B12
  • 39B52


  • Composite functional equation
  • Torsion group
  • 3-group
  • Finitely generated abelian group