Aequationes mathematicae

, Volume 90, Issue 6, pp 1195–1200 | Cite as

A note on stability of maps which preserve equality of distance

  • Yunbai DongEmail author


In this note, we show a generalized stability of maps which preserve equality of distance.


Stability Banach spaces Isometries 

Mathematics Subject Classification

Primary 39B82 Secondary 46B04 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Badora R.: On Hyers–Ulam stability of Wilson’s functional equation. Aequ. Math. 60, 211–218 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Brzdȩk J.: Stability of the equation of the p-Wright affine functions. Aequ. Math. 85, 497–503 (2013)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Brzdȩk J., Popa D., Xu B.: Hyers–Ulam stability for linear equations of higher orders. Acta Math. Hung. 120, 1–8 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Dong Y.: On approximate isometries and application to stability of a functional equation. J. Math. Anal. Appl. 426, 125–137 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dong Y., Zheng B.: On hyperstability of additive mappings onto Banach spaces. Bull. Aust. Math. Soc. 91, 278–285 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Hyers D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. 27, 222–224 (1941)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Jung S.M.: Hyers–Ulam–Rassias Stability of Functional Equations in Nonlinear Analysis. Springer Optimization and Its Applications, vol. 48. Springer, New York (2011)Google Scholar
  8. 8.
    Jung S.M., Popa D., Rassias M.Th.: On the stability of the linear functional equation in a single variable on complete metric groups. J. Glob. Optim. 59, 165–171 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Piszczek M.: The properties of functional inclusions and Hyers–Ulam stability. Aeq. Math. 85, 111–118 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Rassias J.M.: On the Hyers–Ulam stability problem for quadratic multi-dimensional mappings. Aequ. Math. 64, 62–69 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Rassias T.M.: On the stability of the linear mapping in Banach spaces. Proc. Am. Math. Soc. 72, 297–300 (1978)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Rassias T.M.: On the stability of functional equations in Banach space. J. Math. Anal. Appl. 251, 264–284 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sikorska J.: Stability of the preservation of the equality of distance. J. Math. Anal. Appl. 311, 209–217 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Tabor J.: Stability of the Fischer-Muszély functional equation. Publ. Math. Debr. 62, 205–211 (2003)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Ulam S.M.: A Collection of Mathematical Problems, pp. 63. Interscience Publishers, New York (1968)Google Scholar
  16. 16.
    Vogt A.: Maps which preserve equality of distance. Stud. Math. 45, 43–48 (1973)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer International Publishing 2016

Authors and Affiliations

  1. 1.School of Mathematics and ComputerWuhan Textile UniversityWuhanChina

Personalised recommendations