Advertisement

Aequationes mathematicae

, Volume 90, Issue 3, pp 581–595 | Cite as

The rate of growth of moments of certain cotangent sums

  • Helmut Maier
  • Michael Th. Rassias
Article

Abstract

We consider cotangent sums associated to the zeros of the Estermann zeta function considered by the authors in their previous paper (Maier and Rassias, Generalizations of a cotangent sum associated to the Estermann zeta function, 2014). We settle a question on the rate of growth of the moments of these cotangent sums left open in Maier and Rassias (Generalizations of a cotangent sum associated to the Estermann zeta function, 2014), and obtain a simpler proof of the equidistribution of these sums.

Keywords

Cotangent sums series equidistribution Estermann zeta function moments continued fractions measure 

Mathematics Subject Classification

26A12 11L03 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bettin, S.: On the distribution of a cotangent sum. Int. Math. Res. Not. (2015). doi: 10.1093/imrn/rnv036
  2. 2.
    Billingsley P.: Probability and Measure. Wiley, New York (1995)zbMATHGoogle Scholar
  3. 3.
    de la Bretèche R., Tenenbaum G.: Séries trigonométriques à coefficients arithmétiques. J. Anal. Math. 92, 1–79 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Harman G.: Metric Number Theory. Oxford University Press, Oxford, New York (1998)zbMATHGoogle Scholar
  5. 5.
    Hensley D.: Continued Fractions. World Scientific Publ. Co., Singapore (2006)CrossRefzbMATHGoogle Scholar
  6. 6.
    Maier, H., Rassias, M.Th.: Generalizations of a cotangent sum associated to the Estermann zeta function (2014, preprint). arXiv:1410.2145

Copyright information

© Springer Basel 2015

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of UlmUlmGermany
  2. 2.Department of MathematicsETH-ZürichZürichSwitzerland
  3. 3.Department of MathematicsPrinceton UniversityPrincetonUSA

Personalised recommendations