Skip to main content
Log in

The Aumann functional equation for general weighting procedures

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

The functional equation of composite type

$$M(M(x,M(x,y)),M(M(x,y),y))=M(x,y)$$
(1)

arose in the course of the studies on the problem of extension and restriction of the number of arguments of a mean M performed by G. Aumann in the third decade of the past century. A solution to (1) in the analytic case was ulteriorly obtained by Aumann himself and remained as a noteworthy characterization of analytic quasiarithmetic means. An ample generalization of Eq. (1) which involves general weighting operators is considered in this paper. Under mild conditions on the regularity of the involved means, the general solution to this generalized equation is obtained for a particularly tractable class of weighting operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aumann G.: Aufbau von Mittelwerten mehrerer Argumente I. Math. Ann. 109, 235–253 (1933)

    Article  MathSciNet  Google Scholar 

  2. Aumann G.: Aufbau von Mittelwerten mehrerer Argumente II (Analytische Mittelwerte). Math. Ann. 111, 713–730 (1935)

    Article  MathSciNet  Google Scholar 

  3. Berrone L.R.: A dynamical characterization of quasilinear means. Aequationes Math. 84(1), 51–70 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  4. Berrone L.R., Lombardi A.L.: A note on equivalence of means. Publ. Math. Debrecen 58(Fasc. 1–2), 49–56 (2001)

    MATH  MathSciNet  Google Scholar 

  5. Berrone L.R., Sbérgamo G.E.: La familia de bases de una media continua y la representación de las medias cuasiaritméticas. Rev. de la Soc. Venezolana de Matemática XIX(1), 3–18 (2012)

    Google Scholar 

  6. Berrone, L.R., Sbérgamo, G.E.: Weighting general means by iteration (to appear).

  7. Bullen P.S.: Handbook of Means and their Inequalities. Kluwer Academic Publishers, Dordrecht (2010)

    Google Scholar 

  8. Bullen P.S., Mitrinović D.S., Vasić P.M.: Means and their Inequalities. D. Reidel Publishing Company, Dordrecht (1988)

    Book  MATH  Google Scholar 

  9. Horwitz A.: Invariant means. J. Math. Anal. Appl. 270, 499–518 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lawson J., Lim Y.: A general framework for extending means to higher orders. Colloq. Math. 113(2), 191–221 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  11. Matkowski J.: Iterations of mean-type mappings and invariant means. Ann. Math. Siles 13, 211–226 (1999)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucio R. Berrone.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berrone, L.R. The Aumann functional equation for general weighting procedures. Aequat. Math. 89, 1051–1073 (2015). https://doi.org/10.1007/s00010-015-0344-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-015-0344-4

Mathematics Subject Classification

Navigation