Skip to main content

On Montel and Montel–Popoviciu theorems in several variables

Abstract

We present an elementary proof of a general version of Montel’s theorem in several variables which is based on the use of tensor product polynomial interpolation. We also prove a Montel–Popoviciu type theorem for functions \({f:\mathbb{R}^d \to \mathbb{R}}\) for d > 1. Furthermore, our proof of this result is also valid for the case d = 1, differing in several points from Popoviciu’s original proof. Finally, we demonstrate that our results are optimal.

This is a preview of subscription content, access via your institution.

References

  1. Aczel J., D’Hombres J.: Functional equations in several variables, Encyclopedia of Maths. and its Appl. 31. Cambridge University Press, Cambridge (1989)

    Book  Google Scholar 

  2. Almira J.M.: Montel’s theorem and subspaces of distributions which are \({\Delta^m}\) -invariant. Numer. Funct. Anal. Optimiz. 35(4), 389–403 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Almira J.M., López-Moreno A.J.: On solutions of the Fréchet functional equation. J. Math. Anal. Appl. 332, 1119–1133 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Almira, J.M., Abu-Helaiel, K.F.: On Montel’s theorem in several variables. Carpathian J. Math. (to appear). Available at arXiv:1310.3378 (2014)

  5. Almira J.M., Abu-Helaiel K.F.: A note on invariant subspaces and the solution of certain classical functional equations. Ann. Tiberiu Popoviciu Semin. Funct. Equ. Approx. Convexity 11, 3–17 (2013)

    MathSciNet  Google Scholar 

  6. Almira, J.M., Abu-Helaiel, K.F.: A qualitative description of graphs of discontinuous polynomials. Ann. Funct. Anal. (to appear). Available at arXiv:1401.3273 (2015)

  7. Almira, J.M., Székelyhidi, L.: Local polynomials and the Montel Theorem, manuscript, submitted (2014)

  8. Baker J.A.: Functional equations, tempered distributions and Fourier transforms. Trans. Am. Math. Soc. 315(1), 57–68 (1989)

    Article  MATH  Google Scholar 

  9. Banach S.: Sur l’equation fontionnelle f(x + y) = f(x) + f(y). Fundam. Math. 1, 123–124 (1920)

    MATH  Google Scholar 

  10. Baron K., Jarczyk W.: Recent results on functional equations in a single variable, perspectives and open problems. Aequ. Math. 61, 1–48 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ciesielski Z.: Some properties of convex functions of higher order. Ann. Polon. Math. 7, 1–7 (1959)

    MathSciNet  MATH  Google Scholar 

  12. Darboux G.: Memoire sur les fonctions discontinues. Ann. Sci. École Norm. Sup. 4, 57–112 (1875)

    MathSciNet  MATH  Google Scholar 

  13. Djoković, D.Z.: A representation theorem for \({(X_1-1)(X_2-1)\cdots(X_n-1)}\) and its applications. Ann. Polon. Math. 22, 189–198 (1969/1970)

  14. Donoghue Jr. W.F.: Distributions and Fourier Transforms. Academic Press, New York and London (1969)

    Google Scholar 

  15. Fréchet M.: Une definition fonctionelle des polynomes. Nouv. Ann. 9, 145–162 (1909)

    Google Scholar 

  16. Ger R.: On some properties of polynomial functions. Ann. Pol. Math. 25, 195–203 (1971)

    MathSciNet  MATH  Google Scholar 

  17. Ger R.: On extensions of polynomial functions. Results Math. 26, 281–289 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hamel G.: Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung f(x + y) = f(x) + f(y). Math. Ann. 60, 459–462 (1905)

    Article  MathSciNet  MATH  Google Scholar 

  19. Isaacson E., Keller H.B.: Analysis of numerical methods. Wiley, New York (1966)

    MATH  Google Scholar 

  20. Hyers D.H., Isac G., Rassias T.M.: Stability of functional equations in several variables. Birkhäuser, Basel (1998)

    Book  MATH  Google Scholar 

  21. Jacobi C.G.J.: De usu theoriae integralium ellipticorum et integralium abelianorum in analysi diophantea. Werke 2, 53–55 (1834)

    Google Scholar 

  22. Járai A.: Regularity properties of functional equations in several variables. Springer, Berlin (2005)

    MATH  Google Scholar 

  23. Járai A., Székelyhidi L.: Regularization and general methods in the theory of functional equations. Aequ. Math. 52, 10–29 (1996)

    Article  MATH  Google Scholar 

  24. Jones G.A., Singerman D.: Complex functions. An algebraic and geometric viewpoint. Cambridge Univ. Press, Cambridge (1987)

    Book  MATH  Google Scholar 

  25. Kormes M.: On the functional equation f(x + y) = f(x) + f(y). Bull. Am. Math. Soc. 32, 689–693 (1926)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kuczma, M.: An introduction to the theory of functional equations and inequalities. In: Gilányi, A. 2nd edn, Birkhäuser, Basel (2009)

  27. Kuczma M.: On some analogies between measure and category and their applications in the theory of additive functions. Ann. Math. Sil. 13, 155–162 (1985)

  28. Kuczma M.: On measurable functions with vanishing differences. Ann. Math. Sil. 6, 42–60 (1992)

    MathSciNet  Google Scholar 

  29. Kurepa S.: A property of a set of positive measure and its application. J. Math. Soc. Jpn. 13(1), 13–19 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  30. Laczkovich M.: Polynomial mappings on Abelian groups. Aequ. Math. 68(3), 177–199 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Mckiernan M.A.: On vanishing n-th ordered differences and Hamel bases. Ann. Pol. Math. 19, 331–336 (1967)

    MathSciNet  MATH  Google Scholar 

  32. Montel P.: Sur un théoreme du Jacobi. Comptes Rend. Acad. Sci. París 201, 586 (1935)

    Google Scholar 

  33. Montel P.: Sur quelques extensions d’un théorème de Jacobi. Prac Matematyczno-Fizyczne 44(1), 315–329 (1937)

    Google Scholar 

  34. Páles Zs.: Problems in the regularity theory of functional equations. Aequ. Math. 63, 1–17 (2002)

    Article  MATH  Google Scholar 

  35. Popoviciu, T.: Sur quelques propiétés des fonctions d’une ou de deux variables rélles, Thèse, Paris, 12 June 1933. Published in Mathematica vol. 8, pp. 1–85 (1934)

  36. Popoviciu T.: Remarques sur la définition fonctionnelle d’un polynôme d’une variable réelle. Mathematica (Cluj) 12, 5–12 (1936)

    Google Scholar 

  37. Rassias Th., Brzdek J.: Functional equations in mathematical analysis. Springer, Berlin (2011)

    MATH  Google Scholar 

  38. Rudin, W.: Functional analysis. 2nd edn. McGraw-Hill, USA (1991)

  39. San Juan, R.: Una aplicación de las aproximaciones diofánticas a la ecuación funcional f(x 1 + x 2) = f(x 1) + f(x 2), Publicaciones del Inst. Matemático de la Universidad Nacional del Litoral 6, 221–224 (1946)

  40. Sierpinsky, W.: Sur l’equation fontionnelle f(x + y) = f(x) + f(y). Fundam. Math. 1, 116–122 (1920)

  41. Steinhaus H.: Sur les distances des points dans les ensembles de mesure positive.. Fundam. Math. 1, 93–104 (1920)

    MATH  Google Scholar 

  42. Székelyhidi L.: Convolution type functional equations on topological abelian groups.. World Scientific, Singapore (1991)

    Book  Google Scholar 

  43. Székelyhidi, L.: Discrete spectral synthesis and its applications. Springer, Berlin (2006)

  44. Székelyhidi L.: Harmonic and Spectral Analysis. World Scientific, Singapore (2014)

    Book  MATH  Google Scholar 

  45. Székelyhidi, L.: On Fréchet’s functional equation. Monatshefte für Mathematik (to appear) (2014)

  46. Vitrih, V.: Correct interpolation problems in multivariate interpolation spaces, Ph. Thesis, Department of Mathematics, University of Ljubljana (2010)

  47. Vladimirov V.S.: Generalized functions in mathematical analysis. Mir Publishers, Moscow (1979)

    Google Scholar 

  48. Waldschmidt, M.: Topologie des Points Rationnels, Cours de Troisième Cycle 1994/95 Université P. et M. Curie (Paris VI) (1995)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Almira.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aksoy, A.G., Almira, J.M. On Montel and Montel–Popoviciu theorems in several variables. Aequat. Math. 89, 1335–1357 (2015). https://doi.org/10.1007/s00010-014-0329-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-014-0329-8

Mathematics Subject Classification

Keywords