Aequationes mathematicae

, Volume 89, Issue 5, pp 1311–1327 | Cite as

Hyperbolicity in the corona and join of graphs

  • Walter Carballosa
  • José M. Rodríguez
  • José M. Sigarreta


If X is a geodesic metric space and \({x_1, x_2, x_3 \in X}\), a geodesic triangle T = {x 1, x 2, x 3} is the union of the three geodesics [x 1 x 2], [x 2 x 3] and [x 3 x 1] in X. The space X is δ-hyperbolic (in the Gromov sense) if any side of T is contained in a δ-neighborhood of the union of the two other sides, for every geodesic triangle T in X. If X is hyperbolic, we denote by δ(X) the sharp hyperbolicity constant of X, i.e. δ(X) = inf{δ ≥ 0: X is δ-hyperbolic}. In this paper we characterize the hyperbolic product graphs for graph join G + H and the corona \({G\odot\mathcal H: G + H}\) is always hyperbolic, and \({G\odot\mathcal H}\) is hyperbolic if and only if G is hyperbolic. Furthermore, we obtain simple formulae for the hyperbolicity constant of the graph join GH and the corona \({G \odot \mathcal H}\).

Mathematics Subject Classification

05C69 05A20 05C50 


Graph join Corona graph Gromov hyperbolicity Infinite graph 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alonso, J., Brady, T., Cooper, D., Delzant, T., Ferlini, V., Lustig, M., Mihalik, M., Shapiro, M., Short, H.: Notes on word hyperbolic groups. In: Ghys, E., Haefliger, A., Verjovsky, A. Group Theory from a Geometrical Viewpoint, pp. . World Scientific, Singapore (1992)Google Scholar
  2. 2.
    Bermudo, S., Rodríguez, J.M., Rosario, O., Sigarreta, J.M.: Small values of the hyperbolicity constant in graphs (submitted, preprint).
  3. 3.
    Bermudo S., Rodríguez J.M., Sigarreta J.M.: Computing the hyperbolicity constant. Comput. Math. Appl. 62, 4592–4595 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  4. 4.
    Bermudo S., Rodríguez J.M., Sigarreta J.M., Vilaire J.-M.: Gromov hyperbolic graphs. Discret Math. 313, 1575–1585 (2013)CrossRefzbMATHGoogle Scholar
  5. 5.
    Bermudo S., Rodríguez J.M., Sigarreta J.M., Tourís E.: Hyperbolicity and complement of graphs. Appl. Math. Lett. 24, 1882–1887 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  6. 6.
    Bowditch, B.H.: Notes on Gromov’s hyperbolicity criterion for path-metric spaces. In: Ghys, E., Haefliger, A., Verjovsky, A. (eds.) Group Theory from a Geometrical Viewpoint, Trieste, 1990. World Scientific, River Edge, pp. 64–167 (1991)Google Scholar
  7. 7.
    Brinkmann G., Koolen J., Moulton V.: On the hyperbolicity of chordal graphs. Ann. Comb. 5, 61–69 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  8. 8.
    Carballosa W., Casablanca R.M., de la Cruz A., Rodríguez J.M.: Gromov hyperbolicity in strong product graphs. Electr. J. Comb. 20(3), P2 (2013)Google Scholar
  9. 9.
    Carballosa, W., de la Cruz, A., Rodríguez, J.M.: Gromov hyperbolicity in lexicographic product graphs (submitted, preprint).
  10. 10.
    Carballosa W., Rodríguez J.M., Sigarreta J.M., Villeta M.: Gromov hyperbolicity of line graphs. Electr. J. Comb. 18, P210 (2011)Google Scholar
  11. 11.
    Charney R.: Artin groups of finite type are biautomatic. Math. Ann. 292, 671–683 (1992)CrossRefMathSciNetzbMATHGoogle Scholar
  12. 12.
    Chen B., Yau S.-T., Yeh Y.-N.: Graph homotopy and Graham homotopy. Discrete Math. 241, 153–170 (2001)CrossRefMathSciNetzbMATHGoogle Scholar
  13. 13.
    Chepoi, V., Estellon, B.: Packing and covering đ-hyperbolic spaces by balls, APPROX-RANDOM, pp. 59–73 (2007)Google Scholar
  14. 14.
    Chia G.L.: On the join of graph and chromatic uniqueness. J. Graph Theory 19(2), 251–261 (2005)CrossRefMathSciNetGoogle Scholar
  15. 15.
    Eppstein, D.: Squarepants in a tree: sum of subtree clustering and hyperbolic pants decomposition, SODA’2007. In: Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 29-38 (2007)Google Scholar
  16. 16.
    Frucht R., Harary F.: On the corona of two graphs. Aequ. Math. 4(3), 322–324 (1970)CrossRefMathSciNetzbMATHGoogle Scholar
  17. 17.
    Gavoille, C., Ly, O.: Distance labeling in hyperbolic graphs. In: ISAAC, pp. 171–179 (2005)Google Scholar
  18. 18.
    Ghys, E., de la Harpe, P.: Sur les Groupes Hyperboliques d’après Mikhael Gromov. In: Progress in Mathematics, vol. 83. Birkhäuser Boston Inc., Boston (1990)Google Scholar
  19. 19.
    Gromov, M.: Hyperbolic groups, in “Essays in group theory”. In: Gersten, S.M. (ed.) M.S.R.I. Publications, vol. 8. Springer, New York, pp. 75–263 (1987)Google Scholar
  20. 20.
    Harary F.: Graph Theory. Addison-Wesley, Reading (1994)Google Scholar
  21. 21.
    Jonckheere, E., Lohsoonthorn, P.: A hyperbolic geometry approach to multipath routing. In: Proceedings of the 10th Mediterranean Conference on Control and Automation (MED 2002), Lisbon, FA5-1 (2002)Google Scholar
  22. 22.
    Jonckheere E.A.: Contrôle du traffic sur les réseaux à géométrie hyperbolique–Vers une théorie géométrique de la sécurité l’acheminement de l’information. J. Eur. Syst. Autom. 8, 45–60 (2002)Google Scholar
  23. 23.
    Jonckheere E.A., Lohsoonthorn P.: Geometry of network security. Am. Control Conf. ACC, 111–151 (2004)Google Scholar
  24. 24.
    Klešč M.: The join of graph and crossing number. Electron. Note Discrete Math. 28, 349–355 (2007)CrossRefGoogle Scholar
  25. 25.
    Krauthgamer, R., Lee, J.R.: Algorithms on negatively curved spaces. In: Proceedings - Annual IEEE Symposium on Foundations of Computer Science, FOCS, pp. 119–128, New York (2006). doi: 10.1109/FOCS.2006.9
  26. 26.
    Krioukov D., Papadopoulos F., Kitsak M., Vahdat A., Boguñá M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82, 036106 (2010)CrossRefMathSciNetGoogle Scholar
  27. 27.
    Kuziak D., Yero I.G., Rodríguez-Velazquez J.A.: On the strong metric dimension of corona product graphs and join graphs. Discrete Appl. Math. 161(7), 1022–1027 (2013)CrossRefMathSciNetzbMATHGoogle Scholar
  28. 28.
    Michel J., Rodríguez J.M., Sigarreta J.M., Villeta M.: Hyperbolicity and parameters of graphs. ARS Comb. 100, 43–63 (2011)zbMATHGoogle Scholar
  29. 29.
    Michel J., Rodríguez J.M., Sigarreta J.M., Villeta M.: Gromov hyperbolicity in cartesian product graphs. Proc. Indian Acad. Sci. Math. Sci. 120, 1–17 (2010)CrossRefMathSciNetGoogle Scholar
  30. 30.
    Narayan O., Saniee I.: Large-scale curvature of networks. Phys. Rev. E 84, 066108 (2011)CrossRefGoogle Scholar
  31. 31.
    Oshika, K.: Discrete groups. Iwanami Series in Modern Mathematics, vol. 207, pp. 1–193, American Mathematical Society, New York. (2002)
  32. 32.
    Pestana D., Rodríguez J.M., Sigarreta J.M., Villeta M.: Gromov hyperbolic cubic graphs. Central Eur. J. Math. 10(3), 1141–1151 (2012)CrossRefzbMATHGoogle Scholar
  33. 33.
    Portilla, A., Rodríguez, J.M., Sigarreta, J.M., Vilaire, J.-M.: Gromov hyperbolic tessellation graphs. Utilitas Math. (to appear, preprint).
  34. 34.
    Rodríguez J.M.: Characterization of Gromov hyperbolic short graphs. Acta Math. Sin. 30, 197–212 (2014)CrossRefzbMATHGoogle Scholar
  35. 35.
    Rodríguez J.M., Sigarreta J.M., Vilaire J.-M., Villeta M.: On the hyperbolicity constant in graphs. Discrete Math. 311, 211–219 (2011)CrossRefMathSciNetzbMATHGoogle Scholar
  36. 36.
    Shavitt, Y., Tankel, T.: On internet embedding in hyperbolic spaces for overlay construction and distance estimation. In: INFOCOM (2004)Google Scholar
  37. 37.
    Sigarreta, J.M.: Hyperbolicity in median graphs. Proc. Indian Acad. Sci. Math. Sci. (2013) (in press)Google Scholar
  38. 38.
    Yero I.G., Kuziak D., A. R.: Aguilar, coloring, location and domination of corona graphs. Aequ. Math. 86(1–2), 1–21 (2013)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Basel 2014

Authors and Affiliations

  • Walter Carballosa
    • 1
  • José M. Rodríguez
    • 2
  • José M. Sigarreta
    • 3
  1. 1.Consejo Nacional de Ciencia y Tecnología (CONACYT) and Universidad Autónoma de ZacatecasZacatecasMexico
  2. 2.Department of MathematicsUniversidad Carlos III de MadridLeganésSpain
  3. 3.Faculdad de MatemáticasUniversidad Autónoma de GuerreroGuerreroMexico

Personalised recommendations