Skip to main content
Log in

Convexity with respect to families of means

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

In this paper we investigate continuity properties of functions \({f : \mathbb {R}_+ \to \mathbb {R}_+}\) that satisfy the (p, q)-Jensen convexity inequality

$$f\big(H_p(x, y)\big) \leq H_q(f(x), f(y)) \qquad(x, y > 0),$$

where H p stands for the pth power (or Hölder) mean. One of the main results shows that there exist discontinuous multiplicative functions that are (p, p)-Jensen convex for all positive rational numbers p. A counterpart of this result states that if f is (p, p)-Jensen convex for all \({p \in P \subseteq \mathbb {R}_+}\), where P is a set of positive Lebesgue measure, then f must be continuous.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél J.: A generalization of the notion of convex functions. Norske Vid. Selsk. Forh. Trondhjem 19(24), 87–90 (1947)

    MATH  MathSciNet  Google Scholar 

  2. Aczél J.: Lectures on Functional Equations and Their Applications, vol. 19 of Mathematics in Science and Engineering. Academic Press, New York, London (1966)

    Google Scholar 

  3. Bernstein F., Doetsch G.: Zur Theorie der konvexen Funktionen. Math. Ann. 76(4), 514–526 (1915)

    Article  MATH  MathSciNet  Google Scholar 

  4. Hamel G.: Eine Basis aller Zahlen und die unstetigen Lösungen der Funktionalgleichung \({f(x + y) = f(x) + f(y)}\). Math. Ann. 60, 459–462 (1905)

    Article  MATH  MathSciNet  Google Scholar 

  5. Hardy, G.H., Littlewood, J.E., Pólya, G.: Inequalities. Cambridge University Press, Cambridge, (1934) (first edition, 1952, second edition)

  6. Hölder, O.: Über einen Mittelwerthsatz. Nachr. Ges. Wiss. Göttingen, pp. 38–47 (1889)

  7. Jensen, J.L.W.V.: Om konvekse funktioner og uligheder imellem middelvaerdier. Nyt. Tideskrift for Mathematik 16 B, 49–69 (1905)

  8. Jensen J.L.W.V.: Sur les fonctions convexes et les inégualités entre les valeurs moyennes. Acta Math. 30, 175–193 (1906)

    Article  MATH  MathSciNet  Google Scholar 

  9. Kuczma, M.: An introduction to the theory of functional equations and inequalities, volume 489 of Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach. Państwowe Wydawnictwo Naukowe Uniwersytet Śla̧ski, Warszawa–Kraków–Katowice, 1985. In: Gilányi, A. (ed.) 2nd edn. Birkhäuser, Basel (2009)

  10. Maksa, G.: 16. Remark (Solution of J. Matkowski’s problem 14). Report of Meeting: The Thirtieth International Symposium on Functional Equations, September 20–26, 1992, Oberwolfach, Germany, Aequationes Math, vol. 46, p. 292 (1993)

  11. Matkowski, J.: 14. Problem report of meeting. The Thirtieth International Symposium on Functional Equations, September 20–26, 1992, Oberwolfach, Germany, Aequationes Math, vol. 46, p. 291 (1993)

  12. Rodé G.: Eine abstrakte Version des Satzes von Hahn–Banach. Arch. Math. (Basel) 31, 474–481 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  13. Sierpiński W.: Sur les fonctions convexes mesurables. Fund. Math. 1, 125–128 (1920)

    MATH  Google Scholar 

  14. Zgraja T.: Continuity of functions which are convex with respect to means. Publ. Math. Debr. 63(3), 401–411 (2003)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gyula Maksa.

Additional information

Dedicated to the 90th birthday of Professor János Aczél

The research was realized in the frames of the projects “National Excellence Program—Elaborating and operating an inland student and researcher personal support system” (Grant No.: TÁMOP 4.2.4. A/2-11-1-2012-0001) and “Supercomputer, the national virtual lab” (Grant No.: TÁMOP-4.2.2.C-11/1/KONV-2012-0010). These two projects were subsidized by the European Union and by the European Social Fund. The research was also supported by the Hungarian Scientific Research Fund (OTKA) (Grant No.: NK 81402).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maksa, G., Páles, Z. Convexity with respect to families of means. Aequat. Math. 89, 161–167 (2015). https://doi.org/10.1007/s00010-014-0281-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-014-0281-7

Mathematics Subject Classification

Keywords

Navigation