Skip to main content
Log in

Jordan triple mappings on positive definite matrices

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

The main aim of this paper is to characterize the determinant function on the set of positive definite \({n \times n}\) matrices with entries from \({{\mathbb{F}}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél J.: Lectures on Functional Equations and their Applications, pp. XIX 510. Academic Press, New York and London (1966)

    MATH  Google Scholar 

  2. Bhatia, R.: Positive definite matrices. In: Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)

  3. Bobecka K., Wesołowski J.: Multiplicative Cauchy functional equation in the cone of positive-definite symmetric matrices. Ann. Polon. Math. 82(1), 1–7 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  4. Dobovišek M.: Maps from \({M_n(\mathbb{F})}\) to \({\mathbb{F}}\) that are multiplicative with respect to the Jordan triple product. Publ. Math. Debrecen 73(1-2), 89–100 (2008)

    MATH  MathSciNet  Google Scholar 

  5. Fearnley-Sander D.: A characterization of the determinant. Am. Math. Monthly 82(8), 838–840 (1975)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gáspár G.: Die Charakterisierung der Determinanten über einem unendlichen Integritätsbereich mittels Funktionalgleichungen. Publ. Math. Debrecen 10, 244–253 (1963)

    MathSciNet  Google Scholar 

  7. Hitotumatu S.: A characterization of the determinant. Comment. Math. Univ. St. Paul. 13, 45–50 (1964/1965)

    MATH  MathSciNet  Google Scholar 

  8. Kuczma, M.: An introduction to the theory of functional equations and inequalities. In: Gilányi, A. (ed.) Cauchy’s Equation and Jensen’s Inequality, 2nd edn. Birkhäuser, Basel, xiv, 595 p (2009)

  9. Kurepa S.: On the characterization of the determinant. Glasnik Mat-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske 19, 189–198 (1964)

    MATH  MathSciNet  Google Scholar 

  10. McDonald B.R.: A characterization of the determinant. Linear Multilinear Algebra 12(1), 31–36 (1982/83)

    Article  Google Scholar 

  11. Molnár, L.: A remark on the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices. Proc. Am. Math. Soc. 134(10) 2839–2848 (2006) (electronic)

    Google Scholar 

  12. Yamaguti K.: Jordan and Jordan triple isomorphisms of rings. J. Sci. Hiroshima Univ. Ser. A 20, 107–110 (1956)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eszter Gselmann.

Additional information

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK 814 02 and by the ’Lendület’ Program (LP2012-46/2012) of the Hungarian Academy of Sciences.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gselmann, E. Jordan triple mappings on positive definite matrices. Aequat. Math. 89, 629–639 (2015). https://doi.org/10.1007/s00010-013-0251-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-013-0251-5

Mathematics Subject Classification (2010)

Keywords

Navigation