Abstract
The main aim of this paper is to characterize the determinant function on the set of positive definite \({n \times n}\) matrices with entries from \({{\mathbb{F}}}\).
Similar content being viewed by others
References
Aczél J.: Lectures on Functional Equations and their Applications, pp. XIX 510. Academic Press, New York and London (1966)
Bhatia, R.: Positive definite matrices. In: Princeton Series in Applied Mathematics. Princeton University Press, Princeton (2007)
Bobecka K., Wesołowski J.: Multiplicative Cauchy functional equation in the cone of positive-definite symmetric matrices. Ann. Polon. Math. 82(1), 1–7 (2003)
Dobovišek M.: Maps from \({M_n(\mathbb{F})}\) to \({\mathbb{F}}\) that are multiplicative with respect to the Jordan triple product. Publ. Math. Debrecen 73(1-2), 89–100 (2008)
Fearnley-Sander D.: A characterization of the determinant. Am. Math. Monthly 82(8), 838–840 (1975)
Gáspár G.: Die Charakterisierung der Determinanten über einem unendlichen Integritätsbereich mittels Funktionalgleichungen. Publ. Math. Debrecen 10, 244–253 (1963)
Hitotumatu S.: A characterization of the determinant. Comment. Math. Univ. St. Paul. 13, 45–50 (1964/1965)
Kuczma, M.: An introduction to the theory of functional equations and inequalities. In: Gilányi, A. (ed.) Cauchy’s Equation and Jensen’s Inequality, 2nd edn. Birkhäuser, Basel, xiv, 595 p (2009)
Kurepa S.: On the characterization of the determinant. Glasnik Mat-Fiz. Astronom. Ser. II Društvo Mat. Fiz. Hrvatske 19, 189–198 (1964)
McDonald B.R.: A characterization of the determinant. Linear Multilinear Algebra 12(1), 31–36 (1982/83)
Molnár, L.: A remark on the Kochen-Specker theorem and some characterizations of the determinant on sets of Hermitian matrices. Proc. Am. Math. Soc. 134(10) 2839–2848 (2006) (electronic)
Yamaguti K.: Jordan and Jordan triple isomorphisms of rings. J. Sci. Hiroshima Univ. Ser. A 20, 107–110 (1956)
Author information
Authors and Affiliations
Corresponding author
Additional information
This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK 814 02 and by the ’Lendület’ Program (LP2012-46/2012) of the Hungarian Academy of Sciences.
Rights and permissions
About this article
Cite this article
Gselmann, E. Jordan triple mappings on positive definite matrices. Aequat. Math. 89, 629–639 (2015). https://doi.org/10.1007/s00010-013-0251-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00010-013-0251-5