Aequationes mathematicae

, Volume 85, Issue 3, pp 563–579 | Cite as

C4p-frame of complete multipartite multigraphs



For two graphs G and H their wreath product\({G \otimes H}\) has the vertex set \({V(G) \times V(H)}\) in which two vertices (g1, h1) and (g2, h2) are adjacent whenever \({g_{1}g_{2} \in E(G)}\) or g1g2 and \({h_{1}h_{2} \in E(H)}\) . Clearly \({K_{m} \otimes I_{n}}\) , where In is an independent set on n vertices, is isomorphic to the complete m-partite graph in which each partite set has exactly n vertices. A subgraph of the complete multipartite graph \({K_m \otimes I_n}\) containing vertices of all but one partite set is called partial factor. An H-frame of \({K_m \otimes I_n}\) is a decomposition of \({K_m \otimes I_n}\) into partial factors such that each component of it is isomorphic to H. In this paper, we investigate C2k-frames of \({(K_m \otimes I_n)(\lambda)}\) , and give some necessary or sufficient conditions for such a frame to exist. In particular, we give a complete solution for the existence of a C4p-frame of \({(K_m \otimes I_n)(\lambda)}\) , where p is a prime, as follows: For an integer m ≥  3 and a prime p, there exists a C4p-frame of \({(K_m \otimes I_n)(\lambda)}\) if and only if \({(m-1)n \equiv 0 ({\rm {mod}} {4p})}\) and at least one of m, n must be even, when λ is odd.

Mathematics Subject Classification (2010)

05C70 05C51 05B30 


Decomposition factorization frame 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alspach B.R, Gavlas H.J.: Cycle decompositions of K n and K nI. J. Combin. Theory Ser. B 81, 77–99 (2001)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Balakrishnan R., Ranganathan K.: A Textbook of Graph Theory. Springer, New York (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Bondy J.A., Murty U.S.R.: Graph Theory with Applications. The MacMillan Press Ltd., London (1976)MATHGoogle Scholar
  4. 4.
    Billington E.J., Cavenagh N.J., Smith B.R.: Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts. Discret. Math. 310, 241–254 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Billington E.J., Cavenagh N.J., Smith B.R.: Path and cycle decompositions of complete equipartite graphs: four parts. Discret. Math. 309, 3061–3073 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Burling J., Heinrich K.: Near 2-factorizations of 2K n: cycles of even length. Graphs Combin. 5(3), 213–221 (1989)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cao H., Niu M., Tang C.: On the existence of cycle frames and almost resolvable cycle systems. Discret. Math. 311, 2220–2232 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Cavenagh N.J.: Decompositions of complete tripartite graphs into k-cycles. Australas. J. Combin. 18, 193–200 (1998)MathSciNetMATHGoogle Scholar
  9. 9.
    Cavenagh N.J., Billington E.J.: Decompositions of complete multipartite graphs into cycles of even length. Graphs Combin. 16, 49–65 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Furino S.C., Miao Y., Yin J.X.: Frames and resolvable designs: uses, constructions, and existence. CRC Press, Boca Raton (1996)MATHGoogle Scholar
  11. 11.
    Ge G., Miao Y.: PBD’s, frames and resolvability. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton (1996)Google Scholar
  12. 12.
    Hikoe E., Takashi M., Ushio K.: C k-factorization of complete bipartite graphs. Graphs Combin. 4(2), 111–113 (1988)MathSciNetMATHGoogle Scholar
  13. 13.
    Haggkvist, R.: Decompositions of complete bipartite graphs. In: London Mathematical Society Lecture Note Series, vol. 141, pp. 115–147 (1989)Google Scholar
  14. 14.
    Heinrich K., Lindner C.C., Rodger C.A.: Almost resolvable decompositions of 2K n into cycles of odd length. J. Combin. Theory Ser. A 49(2), 218–232 (1988)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hoffman D.G., Linder C.C., Rodger C.A.: On the construction of odd cycle systems. J. Graph Theory 13, 417–426 (1989)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Horton J.D., Roy B.K., Schellenberg P.J., Stinson D.R.: On decomposing graphs into isomorphic uniform 2-factors. Ann. Discret. Math. 27, 297–319 (1985)MathSciNetGoogle Scholar
  17. 17.
    Laywine C.F., Mullen G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998)MATHGoogle Scholar
  18. 18.
    Lindner C.C., Rodger C.A.: Design Theory. Chapman & Hall, Boca Raton (2009)MATHGoogle Scholar
  19. 19.
    Manikandan R.S., Paulraja P.: C p-decompositions of some regular graphs. Discret. Math. 306, 429–451 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Š M.: Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Des. 10, 27–78 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sotteau D.: Decomposition of \({K_{m, n}(K^{*}_{m, n})}\) into cycles (circuits) of length 2k. J. Combin. Theory Ser. B. 30, 75–81 (1981)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Smith B.R.: Decomposing complete equipartite graphs into cycles of length 2p. J. Combin. Des. 16, 244–252 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Smith B.R.: Complete equipartite 3p-cycle systems. Australas. J. Combin. 45, 125–138 (2009)MathSciNetMATHGoogle Scholar
  24. 24.
    Smith B.R.: Decomposing complete equipartite graphs into odd square-length cycles: number of parts odd. J. Combin. Des. 6, 401–414 (2010)CrossRefGoogle Scholar
  25. 25.
    Stinson D.R.: Frames for Kirkman triple systems. Discret. Math. 65(3), 289–300 (1987)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Tiemeyer M.A.: C 4-frames of M(b, n). J. Combin. Math. Combin. Comput. 80, 333–350 (2012)MathSciNetMATHGoogle Scholar
  27. 27.
    Wang J.: Cube factorizations of complete multipartite graphs. Ars Combin. 99, 243–256 (2011)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsPeriyar UniversitySalemIndia

Personalised recommendations