Aequationes mathematicae

, Volume 85, Issue 3, pp 563–579 | Cite as

C4p-frame of complete multipartite multigraphs

Article

Abstract

For two graphs G and H their wreath product\({G \otimes H}\) has the vertex set \({V(G) \times V(H)}\) in which two vertices (g1, h1) and (g2, h2) are adjacent whenever \({g_{1}g_{2} \in E(G)}\) or g1g2 and \({h_{1}h_{2} \in E(H)}\) . Clearly \({K_{m} \otimes I_{n}}\) , where In is an independent set on n vertices, is isomorphic to the complete m-partite graph in which each partite set has exactly n vertices. A subgraph of the complete multipartite graph \({K_m \otimes I_n}\) containing vertices of all but one partite set is called partial factor. An H-frame of \({K_m \otimes I_n}\) is a decomposition of \({K_m \otimes I_n}\) into partial factors such that each component of it is isomorphic to H. In this paper, we investigate C2k-frames of \({(K_m \otimes I_n)(\lambda)}\) , and give some necessary or sufficient conditions for such a frame to exist. In particular, we give a complete solution for the existence of a C4p-frame of \({(K_m \otimes I_n)(\lambda)}\) , where p is a prime, as follows: For an integer m ≥  3 and a prime p, there exists a C4p-frame of \({(K_m \otimes I_n)(\lambda)}\) if and only if \({(m-1)n \equiv 0 ({\rm {mod}} {4p})}\) and at least one of m, n must be even, when λ is odd.

Mathematics Subject Classification (2010)

05C70 05C51 05B30 

Keywords

Decomposition factorization frame 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Alspach B.R, Gavlas H.J.: Cycle decompositions of K n and K nI. J. Combin. Theory Ser. B 81, 77–99 (2001)MathSciNetMATHCrossRefGoogle Scholar
  2. 2.
    Balakrishnan R., Ranganathan K.: A Textbook of Graph Theory. Springer, New York (2000)MATHCrossRefGoogle Scholar
  3. 3.
    Bondy J.A., Murty U.S.R.: Graph Theory with Applications. The MacMillan Press Ltd., London (1976)MATHGoogle Scholar
  4. 4.
    Billington E.J., Cavenagh N.J., Smith B.R.: Path and cycle decompositions of complete equipartite graphs: 3 and 5 parts. Discret. Math. 310, 241–254 (2010)MathSciNetMATHCrossRefGoogle Scholar
  5. 5.
    Billington E.J., Cavenagh N.J., Smith B.R.: Path and cycle decompositions of complete equipartite graphs: four parts. Discret. Math. 309, 3061–3073 (2009)MathSciNetMATHCrossRefGoogle Scholar
  6. 6.
    Burling J., Heinrich K.: Near 2-factorizations of 2K n: cycles of even length. Graphs Combin. 5(3), 213–221 (1989)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Cao H., Niu M., Tang C.: On the existence of cycle frames and almost resolvable cycle systems. Discret. Math. 311, 2220–2232 (2011)MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    Cavenagh N.J.: Decompositions of complete tripartite graphs into k-cycles. Australas. J. Combin. 18, 193–200 (1998)MathSciNetMATHGoogle Scholar
  9. 9.
    Cavenagh N.J., Billington E.J.: Decompositions of complete multipartite graphs into cycles of even length. Graphs Combin. 16, 49–65 (2000)MathSciNetMATHCrossRefGoogle Scholar
  10. 10.
    Furino S.C., Miao Y., Yin J.X.: Frames and resolvable designs: uses, constructions, and existence. CRC Press, Boca Raton (1996)MATHGoogle Scholar
  11. 11.
    Ge G., Miao Y.: PBD’s, frames and resolvability. In: Colbourn, C.J., Dinitz, J.H. (eds.) CRC Handbook of Combinatorial Designs, CRC Press, Boca Raton (1996)Google Scholar
  12. 12.
    Hikoe E., Takashi M., Ushio K.: C k-factorization of complete bipartite graphs. Graphs Combin. 4(2), 111–113 (1988)MathSciNetMATHGoogle Scholar
  13. 13.
    Haggkvist, R.: Decompositions of complete bipartite graphs. In: London Mathematical Society Lecture Note Series, vol. 141, pp. 115–147 (1989)Google Scholar
  14. 14.
    Heinrich K., Lindner C.C., Rodger C.A.: Almost resolvable decompositions of 2K n into cycles of odd length. J. Combin. Theory Ser. A 49(2), 218–232 (1988)MathSciNetMATHCrossRefGoogle Scholar
  15. 15.
    Hoffman D.G., Linder C.C., Rodger C.A.: On the construction of odd cycle systems. J. Graph Theory 13, 417–426 (1989)MathSciNetMATHCrossRefGoogle Scholar
  16. 16.
    Horton J.D., Roy B.K., Schellenberg P.J., Stinson D.R.: On decomposing graphs into isomorphic uniform 2-factors. Ann. Discret. Math. 27, 297–319 (1985)MathSciNetGoogle Scholar
  17. 17.
    Laywine C.F., Mullen G.L.: Discrete Mathematics Using Latin Squares. Wiley, New York (1998)MATHGoogle Scholar
  18. 18.
    Lindner C.C., Rodger C.A.: Design Theory. Chapman & Hall, Boca Raton (2009)MATHGoogle Scholar
  19. 19.
    Manikandan R.S., Paulraja P.: C p-decompositions of some regular graphs. Discret. Math. 306, 429–451 (2006)MathSciNetMATHCrossRefGoogle Scholar
  20. 20.
    Š M.: Cycle decompositions III: complete graphs and fixed length cycles. J. Combin. Des. 10, 27–78 (2002)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Sotteau D.: Decomposition of \({K_{m, n}(K^{*}_{m, n})}\) into cycles (circuits) of length 2k. J. Combin. Theory Ser. B. 30, 75–81 (1981)MathSciNetMATHCrossRefGoogle Scholar
  22. 22.
    Smith B.R.: Decomposing complete equipartite graphs into cycles of length 2p. J. Combin. Des. 16, 244–252 (2008)MathSciNetMATHCrossRefGoogle Scholar
  23. 23.
    Smith B.R.: Complete equipartite 3p-cycle systems. Australas. J. Combin. 45, 125–138 (2009)MathSciNetMATHGoogle Scholar
  24. 24.
    Smith B.R.: Decomposing complete equipartite graphs into odd square-length cycles: number of parts odd. J. Combin. Des. 6, 401–414 (2010)CrossRefGoogle Scholar
  25. 25.
    Stinson D.R.: Frames for Kirkman triple systems. Discret. Math. 65(3), 289–300 (1987)MathSciNetMATHCrossRefGoogle Scholar
  26. 26.
    Tiemeyer M.A.: C 4-frames of M(b, n). J. Combin. Math. Combin. Comput. 80, 333–350 (2012)MathSciNetMATHGoogle Scholar
  27. 27.
    Wang J.: Cube factorizations of complete multipartite graphs. Ars Combin. 99, 243–256 (2011)MathSciNetMATHGoogle Scholar

Copyright information

© Springer Basel 2012

Authors and Affiliations

  1. 1.Department of MathematicsPeriyar UniversitySalemIndia

Personalised recommendations