Advertisement

Aequationes mathematicae

, Volume 85, Issue 3, pp 429–448 | Cite as

Space pre-order and minus partial order for operators on Banach spaces

  • Dragan S. RakićEmail author
  • Dragan S. Djordjević
Article

Abstract

We extend the definitions of space pre-order and minus partial order to the class of bounded linear operators on Banach spaces. Thus, we generalize several results which are well-known for real and complex matrices.

Mathematics Subject Classification

47A05 15A09 06A06 

Keywords

Minus partial order space pre-order generalized inverses operator matrices 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baksalary J.K.: A relationship between the star and minus orderings. Linear Algebra Appl. 82, 163–167 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baksalary J.K., Pukelsheim F.: On the löwner, minus, and star partial orderings of nonnegative definite matrices and their squares. Linear Algebra Appl. 151, 135–141 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Baksalary J.K., Pukelsheim F., Styan G.P.: Some properties of matrix partial orderings. Linear Algebra Appl. 119, 57–85 (1989)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Bapat R.B., Jain S.K., Snyder L.E.: Nonnegative idempotent matrices and minus partial order. Linear Algebra Appl. 261, 143–154 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Barnes B.: Majorization, range inclusion, and factorization for bounded linear operators. Proc. Am. Math. Soc. 133(1), 155–162 (2005)zbMATHCrossRefGoogle Scholar
  6. 6.
    Ben-Israel A., Grevile T.N.E.: Generalized inverses: theory and applications. 2nd edn. Springer, New York (2002)Google Scholar
  7. 7.
    Blackwood B., Jain S.K., Prasad K.M., Srivastava A.K.: Shorted operators relative to a partial order in a regular ring. Commun. Algebra 37(11), 4141–4152 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  8. 8.
    Djordjević D.S., Rakočević V.: Lectures on generalized inverses. Faculty of Science and Mathematics, University of Niš, Niš (2008)Google Scholar
  9. 9.
    Djordjević D.S., Stanimirović P.S.: General representations of pseudo inverses. Mat. Vesnik. 51(3–4), 69–76 (1999)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Douglas R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Am. Math. Soc. 17(2), 413–415 (1966)zbMATHCrossRefGoogle Scholar
  11. 11.
    Goller H.: Shorted operators and rank decomposition matrices. Linear Algebra Appl. 81, 207–236 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Groß J.: A note on the rank-subtractivity ordering. Linear Algebra Appl. 289(1–3), 151–160 (1999)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Harte R.: Invertibility and Singularity for Bounded Linear Operators. M. Dekker, New York (1988)zbMATHGoogle Scholar
  14. 14.
    Hartwig R.E.: How to partially order regular elements. Math. Japon. 25(1), 1–13 (1980)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Hartwig R.E., Styan G.P.H.: On some characterizations of the star partial ordering for matrices and rank subtractivity. Linear Algebra Appl. 82, 145–161 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Legiša P.: Automorphisms of M n, partially ordered by rank subtractivity ordering. Linear Algebra Appl. 389, 147–158 (2004)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Mitra S.K.: Fixed rank solutions of linear matrix equations. Sankhyā Ser. A. 34(4), 387–392 (1972)zbMATHGoogle Scholar
  18. 18.
    Mitra S.K.: Infimum of a pair of matrices. Linear Algebra Appl. 105, 163–182 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Mitra S.K.: Matrix partial orders through generalized inverses: unified theory. Linear Algebra Appl. 148, 237–263 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Mitra S.K.: The minus partial order and the shorted matrix. Linear Algebra Appl. 83, 1–27 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Mitra S.K., Bhimasankaram P., Malik S.B.: Matrix partial orders, shorted operators and applications. World Scientific, New Jersey (2010)zbMATHGoogle Scholar
  22. 22.
    Mitra S.K., Odell P.L.: On parallel summability of matrices. Linear Algebra Appl. 74, 239–255 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    Mitsch H.: A natural partial order for semigroups. Proc. Am. Math. Soc. 97(3), 384– 388 (1986)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Rakočević V.: Funkcionalna analiza. Naučna knjiga, Beograd (1994)Google Scholar
  25. 25.
    Rao C.R., Mitra S.K., Bhimasankaram P.: Determination of a matrix by its subclasses of generalized inverses. Sankhyā Ser. A. 34(1), 5–8 (1972)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Sambamutry P.: Characterization of a matrix by its subclass of G-inverses. Sankhyā Ser. A. 49(3), 412–414 (1987)Google Scholar
  27. 27.
    Šemrl P.: Automorphisms of B(H) with respect to minus partial order. J. Math. Anal. Appl. 369, 205–213 (2010)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Tian Y.: Solving a minus partial ordering equation over von Neumann regular rings. Rev. Math. Comput. 24, 335–342 (2011)zbMATHGoogle Scholar
  29. 29.
    Tian Y., Cheng S.: The maximal and minimal ranks of ABXC with applications. N Y J. Math. 9, 345–362 (2003)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Tošić M., Cvetković-Ilić D.S.: Invertibility of a linear combination of two matrices and partial orderings. Appl. Math. Comput. 218, 4651–4657 (2012)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Faculty of Sciences and MathematicsUniversity of NišNišSerbia

Personalised recommendations