Skip to main content
Log in

The equality problem in the class of conjugate means

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Let \({I\subset\mathbb{R}}\) be a nonempty open interval and let \({L:I^2\to I}\) be a fixed strict mean. A function \({M:I^2\to I}\) is said to be an L-conjugate mean on I if there exist \({p,q\in{]}0,1]}\) and a strictly monotone and continuous function φ such that

$$M(x,y):=\varphi^{-1}(p\varphi(x)+q\varphi(y)+(1-p-q)\varphi(L(x,y)))=:L_\varphi^{(p,q)}(x,y),$$

for all \({x,y\in I}\) . Here L(x, y) is a fixed quasi-arithmetic mean. We will solve the equality problem in this class of means.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aczél J.: Lectures on functional equations and their applications. In: Mathematics in Science and Engineering, vol. 19. Academic Press, New York (1966)

    Google Scholar 

  2. Bakula M. Klaričić, Páles Zs., Pečarić J.: On weighted L-conjugate means. Commun. Appl. Anal. 11(1), 95–110 (2007)

    MathSciNet  MATH  Google Scholar 

  3. Daróczy Z.: On the equality and comparison problem of a class of mean values. Aequ. Math. 81, 201–208 (2011)

    Article  MATH  Google Scholar 

  4. Daróczy Z., Dascǎl J.: On the equality problem of conjugate means. Results Math. 58(1–2), 69–79 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Daróczy Z., Dascǎl J.: On conjugate means of n variables. Ann. Univ. Sci. Budapest. Sec. Comput. 34, 87–94 (2011)

    MATH  Google Scholar 

  6. Daróczy Z., Páles Zs.: On means that are both quasi-arithmetic and conjugate arithmetic. Acta Sci. Math. (Szeged) 90(4), 271–282 (2001)

    MATH  Google Scholar 

  7. Daróczy Z., Páles Zs.: Gauss-composition of means and the solution of the Matkowski–Sutô problem. Publ. Math. Debr. 61(1–2), 157–218 (2002)

    MATH  Google Scholar 

  8. Daróczy Z., Páles Zs.: Generalized convexity and comparison of mean values. Acta Sci. Math. (Szeged) 71, 105–116 (2005)

    MathSciNet  MATH  Google Scholar 

  9. Hardy G.H., Littlewood J.E., Pólya G.: Inequalities, 1st edn. Cambridge University Press, Cambridge (1934) (1952, second edition)

    Google Scholar 

  10. Jarczyk, J.: When Lagrangean and quasi-arithmetic means coincide. J. Inequal. Pure Appl. Math. 8(3), Article 71 (2007)

    Google Scholar 

  11. Kuczma, M.: An introduction to the theory of functional equations and inequalities. In: Prace Naukowe Uniwersytetu Śla̧skiego w Katowicach, vol. 489. Państwowe Wydawnictwo Naukowe-Uniwersytet Śla̧ski, Warszawa-Kraków-Katowice (1985)

  12. Losonczi L.: Equality of two variable weighted means: reduction to differential equations. Aequ. Math. 58(3), 223–241 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Losonczi L.: Equality of Cauchy mean values. Publ. Math. Debr. 57(1–2), 217–230 (2000)

    MathSciNet  MATH  Google Scholar 

  14. Losonczi L.: Equality of two variable Cauchy mean values. Aequ. Math. 65(1–2), 61–81 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Losonczi L.: Equality of two variable means revisited. Aequ. Math. 71(3), 228–245 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  16. Losonczi L., Páles Zs.: Equality of two-variable functional means generated by different measures. Aequ. Math. 81(1), 31–53 (2011)

    Article  MATH  Google Scholar 

  17. Makó Z., Páles Zs.: On the equality of generalized quasi-arithmetic means. Publ. Math. Debr. 72(3–4), 407–440 (2008)

    MATH  Google Scholar 

  18. Maksa Gy., Páles Zs.: Remarks on the comparison of weighted quasi-arithmetic means. Colloq. Math. 120(1), 77–84 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  19. Matkowski J.: Solution of a regularity problem in equality of Cauchy means. Publ. Math. Debr. 64(3–4), 391–400 (2004)

    MathSciNet  MATH  Google Scholar 

  20. Matkowski J.: Generalized weighted and quasi-arithmetic means. Aequ. Math. 79(3), 203–212 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  21. Matkowski J.: A functional equation related to an equality of means problem. Colloq. Math. 122(2), 289–298 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Páles Zs.: On the equality of quasi-arithmetic means and Lagrangean means. J. Math. Anal. Appl. 382, 86–96 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Judita Dascăl.

Additional information

This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK 81402 (first and second author) and OTKA “Mobility” call HUMAN-MB08A-84581 (first author).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Burai, P., Dascăl, J. The equality problem in the class of conjugate means. Aequat. Math. 84, 77–90 (2012). https://doi.org/10.1007/s00010-011-0113-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-011-0113-y

Mathematics Subject Classification (2000)

Keywords

Navigation