Aequationes mathematicae

, Volume 84, Issue 1–2, pp 77–90

The equality problem in the class of conjugate means


DOI: 10.1007/s00010-011-0113-y

Cite this article as:
Burai, P. & Dascăl, J. Aequat. Math. (2012) 84: 77. doi:10.1007/s00010-011-0113-y


Let \({I\subset\mathbb{R}}\) be a nonempty open interval and let \({L:I^2\to I}\) be a fixed strict mean. A function \({M:I^2\to I}\) is said to be an L-conjugate mean on I if there exist \({p,q\in{]}0,1]}\) and a strictly monotone and continuous function φ such that
for all \({x,y\in I}\) . Here L(x, y) is a fixed quasi-arithmetic mean. We will solve the equality problem in this class of means.

Mathematics Subject Classification (2000)

Primary 39B22 Secondary 39B12 26E60 


Mean functional equation quasi-arithmetic mean conjugate mean 

Copyright information

© Springer Basel AG 2012

Authors and Affiliations

  1. 1.Faculty of InformaticsUniversity of DebrecenDebrecenHungary
  2. 2.Department of MathematicsTU BerlinBerlinGermany
  3. 3.Mathematics Research UnitUniversity of LuxembourgLuxembourgGrand Duchy of Luxembourg

Personalised recommendations