Abstract
We consider two-variable functional means of the form
where f, g are continuous functions on a real interval such that g is positive, f/g is strictly monotonic and μ is a measure over the Borel sets of [0,1]. The main results concern the functional equation M f,g;μ = M f,g;ν for the unknown functions f, g, where μ and ν are given measures. Depending on the symmetry properties of the measures, various necessary conditions and sufficient conditions are established.
Similar content being viewed by others
References
Aczél J., Daróczy Z.: Über verallgemeinerte quasilineare Mittelwerte, die mit Gewichtsfunktionen gebildet sind. Publ. Math. Debrecen 10, 171–190 (1963)
Alzer H.: Bestmögliche Abschätzungen für spezielle Mittelwerte. Univ. u Novom Sadu Zb. Rad. Prirod.-Mat. Fak. Ser. Mat. 23(1), 331–346 (1993)
Bajraktarević M.: Sur une équation fonctionnelle aux valeurs moyennes. Glasnik Mat.-Fiz. Astronom. Društvo Mat. Fiz. Hrvatske Ser. II 13, 243–248 (1958)
Bajraktarević M.: Über die Vergleichbarkeit der mit Gewichtsfunktionen gebildeten Mittelwerte. Studia Sci. Math. Hungar. 4, 3–8 (1969)
Berrone L.R.: The mean value theorem: functional equations and Lagrangian means. Epsilon 14((1(40))), 131–151 (1998)
Berrone L.R., Moro J.: Lagrangian means. Aequationes Math. 55(3), 217–226 (1998)
Brenner J.: A unified treatment and extension of some means of classical analysis. I. Comparison theorems. J. Combin. Inform. System Sci. 3, 175–199 (1978)
Carlson B.C.: The logarithmic mean. Amer. Math. Monthly 79, 615–618 (1972)
Járai, A.: Regularity Properties of Functional Equations in Several Variables, Adv Math, vol. 8. Springer, Berlin (2005)
Losonczi L.: Inequalities for integral mean values. J. Math. Anal. Appl. 61(3), 586–606 (1977)
Losonczi L.: Equality of two variable weighted means: reduction to differential equations. Aequationes Math. 58(3), 223–241 (1999)
Losonczi L.: Equality of Cauchy mean values. Publ. Math. Debrecen 57, 217–230 (2000)
Losonczi L.: Equality of two variable Cauchy mean values. Aequationes Math. 65(1–2), 61–81 (2003)
Losonczi L.: Equality of two variable means revisited. Aequationes Math. 71(3), 228–245 (2006)
Losonczi L., Páles Zs.: Minkowski’s inequality for two variable difference means. Proc. Amer. Math. Soc. 126(3), 779–789 (1998)
Losonczi L., Páles Zs.: Comparison of means generated by two functions and a measure. J. Math. Anal. Appl. 345(1), 135–146 (2008)
Leach E., Sholander M.: Extended mean values. Amer. Math. Monthly 85(2), 84–90 (1978)
Leach E., Sholander M.: Extended mean values. II. J. Math. Anal. Appl. 92, 207–223 (1983)
Leach E., Sholander M.: Multivariable extended mean values. J. Math. Anal. Appl. 104, 390–407 (1984)
Makó Z., Páles Zs.: On the equality of generalized quasiarithmetic means. Publ. Math. Debrecen 72, 407–440 (2008)
Mitrinović, D.S., Pečarić, J.E., Fink, A.M.: Inequalities Involving Functions and Their Integrals and Derivatives, Mathematics and its Applications (East European Series), vol. 53. Kluwer Academic Publishers Group, Dordrecht (1991)
Mitrinović D.S., Pečarić J.E., Fink A.M.: Classical and New Inequalities in Analysis, Mathematics and its Applications (East European Series), vol. 61. Kluwer Academic Publishers Group, Dordrecht (1993)
Páles Zs.: On the characterization of quasi-arithmetic means with weight function. Aequationes Math. 32(2–3), 171–194 (1987)
Páles Zs.: Comparison of two variable homogeneous means, General Inequalities 6 (Oberwolfach, 1990). In: Walter, W. (eds) International Series of Numerical Mathematics, pp. 59–70. Birkhäuser, Basel (1992)
Sándor J.: On certain inequalities for means. J. Math. Anal. Appl. 189, 602–606 (1995)
Stolarsky K.B.: Generalizations of the logarithmic mean. Math. Mag. 48, 87–92 (1975)
Stolarsky K.B.: The power and generalized logarithmic means. Amer. Math. Monthly 87(7), 545–548 (1980)
Author information
Authors and Affiliations
Corresponding author
Additional information
Dedicated to the 85th birthday of Professor János Aczél
This research has been supported by the Hungarian Scientific Research Fund (OTKA) Grant NK81402 and by the TÁMOP 4.2.1./B-09/1/KONV-2010-0007 project implemented through the New Hungary Development Plan co-financed by the European Social Fund, and the European Regional Development Fund.
Rights and permissions
About this article
Cite this article
Losonczi, L., Páles, Z. Equality of two-variable functional means generated by different measures. Aequat. Math. 81, 31–53 (2011). https://doi.org/10.1007/s00010-010-0059-5
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00010-010-0059-5