Skip to main content
Log in

On uniformly bounded spherical functions in Hilbert space

  • Published:
Aequationes mathematicae Aims and scope Submit manuscript

Abstract

Let G be a commutative group, written additively, with a neutral element 0, and let K be a finite group. Suppose that K acts on G via group automorphisms \({G \ni a \mapsto ka \in G}\) , \({k \in K}\) . Let \({{\mathfrak{H}}}\) be a complex Hilbert space and let \({{\mathcal L}({\mathfrak{H}})}\) be the algebra of all bounded linear operators on \({{\mathfrak{H}}}\) . A mapping \({u \colon G \to {\mathcal L}({\mathfrak{H}})}\) is termed a K-spherical function if it satisfies (1) \({|K|^{-1} \sum_{k\in K} u (a+kb)=u (a) u (b)}\) for any \({a,b\in G}\) , where |K| denotes the cardinality of K, and (2) \({u (0) = {\rm id}_{\mathfrak {H}},}\) where \({{\rm id}_{\mathfrak {H}}}\) designates the identity operator on \({{\mathfrak{H}}}\) . The main result of the paper is that for each K-spherical function \({u \colon G \to {\mathcal {L}}({\mathfrak {H}})}\) such that \({\| u \|_{\infty} = \sup_{a\in G} \| u (a)\|_{{\mathcal L}({\mathfrak{H}})} < \infty,}\) there is an invertible operator S in \({{\mathcal L}({\mathfrak{H}})}\) with \({\| S \| \, \| S^{-1}\| \leq |K| \, \| u \|_{\infty}^2}\) such that the K-spherical function \({{\tilde{u}} \colon G \to {\mathcal L}({\mathfrak{H}})}\) defined by \({{\tilde{u}}(a) = S u (a) S^{-1},\,a \in G,}\) satisfies \({{\tilde{u}}(-a) = {\tilde{u}}(a)^*}\) for each \({a \in G}\) . It is shown that this last condition is equivalent to insisting that \({{\tilde{u}}(a)}\) be normal for each \({a \in G}\) .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Badora R.: On a joint generalization of Cauchy’s and d’Alembert’s functional equations. Aequationes Math. 43, 72–89 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bonsall F.F., Duncan J.: Complete Normed Algebras. Springer, Berlin (1973)

    MATH  Google Scholar 

  3. Chojnacki W.: Fonctions cosinus hilbertiennes bornées dans les groupes commutatifs localement compacts. Compos. Math. 57, 15–60 (1986)

    MathSciNet  MATH  Google Scholar 

  4. Chojnacki W.: On some functional equation generalizing Cauchy’s and d’Alembert’s functional equations. Colloq. Math. 55, 169–178 (1988)

    MathSciNet  MATH  Google Scholar 

  5. Day M.M.: Ergodic theorems for abelian semigroups. Trans. Am. Math. Soc. 51, 399–412 (1942)

    MATH  Google Scholar 

  6. Day M.M.: Means for the bounded functions and ergodicity of the bounded representations of semi-groups. Trans. Am. Math. Soc. 69, 276–291 (1950)

    MATH  Google Scholar 

  7. Dixmier J.: Les moyennes invariantes dans les semi-groups et leurs applications. Acta Sci. Math. (Szeged) 12, 213–227 (1950)

    MathSciNet  Google Scholar 

  8. Fattorini H.O.: Uniformly bounded cosine functions in Hilbert space. Indiana Univ. Math. J. 20, 411–425 (1970)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fuglede B.: A commutativity theorem for normal operators. Proc. Am. Math. Soc. 36, 35–40 (1950)

    MathSciNet  MATH  Google Scholar 

  10. Greenleaf F.P.: Invariant Means on Topological Groups and Their Applications. Van Nostrand, New York (1969)

    MATH  Google Scholar 

  11. Hewitt E., Ross K.A.: Abstract Harmonic Analysis, vol. 1. Springer, Berlin (1963)

    Google Scholar 

  12. Kurepa S.: Uniformly bounded cosine function in a Banach space. Math. Bohem. 2, 109–115 (1972)

    MathSciNet  MATH  Google Scholar 

  13. Pedersen G.K.: Analysis Now (revised edn). Springer, New York (1995)

    Google Scholar 

  14. Pisier G.: Similarity Problems and Completely Bounded Maps. Lecture Notes in Mathematics, vol. 1618. Springer, Berlin (2001)

    Google Scholar 

  15. Putnam C.R.: On normal operator in Hilbert space. Am. J. Math. 73, 357–362 (1951)

    Article  MathSciNet  MATH  Google Scholar 

  16. Rosenblum M.: On a theorem of Fuglede and Putnam. J. Lond. Math. Soc. 33, 376–377 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  17. Rudin W.: Functional Analysis. McGraw-Hill, New York (1973)

    MATH  Google Scholar 

  18. Rudin W.: Real and Complex Analysis, 3rd edn. McGraw-Hill, New York (1987)

    MATH  Google Scholar 

  19. Shin’ya H.: Spherical matrix functions and Banach representability for compactly generated locally compact motion groups. J. Math. Kyoto Univ. 38, 167–200 (1998)

    MathSciNet  MATH  Google Scholar 

  20. Stetkær H.: D’Alembert’s equation and spherical functions. Aequationes Math. 48, 220–227 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Stetkær H.: On operator-valued spherical functions. J. Funct. Anal. 224, 338–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  22. Sz.-Nagy B.: On uniformly bounded linear transformations in Hilbert space. Acta Sci. Math. (Szeged) 11, 152–157 (1947)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Chojnacki.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chojnacki, W. On uniformly bounded spherical functions in Hilbert space. Aequat. Math. 81, 135–154 (2011). https://doi.org/10.1007/s00010-010-0037-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00010-010-0037-y

Mathematics Subject Classification (2000)

Keywords

Navigation