Skip to main content
Log in

Dunkl–Weinstein Multiplier Operators and Applications to Reproducing Kernel Theory

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we have interested on the Dunkl–Weinstein multiplier operators \(\mathscr {M}_{k,\beta ,a}\) on the Dunkl–Weinstein-type Paley–Wiener space \(\mathscr {H}_s\). We give for these operators an application to the reproducing kernel theory; and we deduce for them best approximation on the Paley–Wiener space \(\mathscr {H}_s\). Finally, we give two applications in two particular cases, the first is a Weinstein case \((k=0)\), and the second is the Dunkl case when \(G=\mathbb {Z}_2^d\). More precisely, we write the solution of the Tikhonov regularization problem in these cases as a convolution product of two functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statement

There are no data used in this manuscript.

References

  1. Ben Salem, N., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integral Transf. Spec. Funct. 26(9), 700–718 (2015)

    Article  MathSciNet  Google Scholar 

  2. Ben Salem, N., Nasr, A.R.: The Littlewood–Paley \(g\)-function associated with the Weinstein operator. Integral Transf. Spec. Funct. 11, 846–865 (2016)

    Article  MathSciNet  Google Scholar 

  3. Ben Salem, N., Nasr, A.R.: Shapiro type inequalities for the Weinstein and the Weinstein-Gabor transforms. Konuralp J. Math. 5(1), 68–76 (2017)

    MathSciNet  Google Scholar 

  4. Ben, S.N.: Hardy–Littlewood–Sobolev type inequalities associated with the Weinstein operator. Integral Transf. Spec. Funct. 31(1), 18–35 (2020)

    Article  MathSciNet  Google Scholar 

  5. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    Article  MathSciNet  Google Scholar 

  6. Dunkl, C.F.: Integral kernels with reflection groups invariance. Can. J. Math. 43, 1213–1227 (1991)

    Article  MathSciNet  Google Scholar 

  7. Dunkl, C.F.: Hankel transforms associated to finite reflection groups. Contemp. Math. 138, 123–138 (1992)

    Article  MathSciNet  Google Scholar 

  8. Hassini, A., Trimèche, K.: Wavelets and generalized windowed transforms associated with the Dunkl-Bessel-Laplace operator on \(\mathbb{R} ^d \times \mathbb{R} _+\). Mediterr. J. Math. 12, 1323–1344 (2015)

    Article  MathSciNet  Google Scholar 

  9. Hikami, K.: Dunkl operators formalism for quantum many-body problems associated with classical root systems. J. Phys. Soc. Japan. 65, 394–401 (1996)

    Article  MathSciNet  Google Scholar 

  10. Matsuura, T., Saitoh, S., Trong, D.: Inversion formulas in heat conduction multidimensional spaces. J. Inv. Ill-posed Problems. 13, 479–493 (2005)

    Article  MathSciNet  Google Scholar 

  11. Matsuura, T., Saitoh, S.: Analytical and numerical inversion formulas in the Gaussian convolution by using the Paley-Wiener spaces. Appl. Anal. 85, 901–915 (2006)

    Article  MathSciNet  Google Scholar 

  12. Mejjaoli, H., Trimèche, K.: Harmonic analysis associated with the Dunkl-Bessel Laplace operator and a mean value property. FCAA. 4(4), 443–480 (2001)

    MathSciNet  Google Scholar 

  13. Mejjaoli, H.: Generalized Dunkl-Sobolev spaces of exponential type and applications. J. Ineq. Pure Appl. Math. 10(2), art. 55 (2009)

  14. Mejjaoli, H., Sraieb, N.: Uncertainty principles for the Dunkl-Bessel transform. Math. Sci. Res. J. 15(8), 245–263 (2011)

    MathSciNet  Google Scholar 

  15. Nefzi, W.: Weinstein multipliers of Laplace transform type. Integral Transform. Spec. Funct. 29(6), 470–488 (2018)

    Article  MathSciNet  Google Scholar 

  16. Nefzi, W.: Fractional integrals for the Weinstein operator. Integral Transf. Spec. Funct. 31(11), 906–920 (2020)

    Article  MathSciNet  Google Scholar 

  17. Rebhi, S.: An analog of Titchmarsh’s theorem associated with a Dunkl-Bessel operator. Int. J. Math. Anal. 11(9), 425–431 (2017)

    Article  Google Scholar 

  18. Rösler M. Bessel-type signed hypergroups on \(\mathbb{R}\), in: H. Heyer, A. Mukherjea (Eds.), Proceedings of the XI, Probability measures on groups and related structures, Oberwolfach, 1994, World Scientific, Singapore, 292–304 (1995)

  19. Rösler, M.: Positivity of Dunkl’s intertwining operator. Duke Math. J. 98, 445–463 (1999)

    Article  MathSciNet  Google Scholar 

  20. Safouane, N., Daher, R.: Uncertainty principles for the Dunkl-Bessel type transform. Int. J. Eng. Appl. Phys. 2(1), 402–412 (2022)

    Google Scholar 

  21. Saitoh, S.: Best approximation, Tikhonov regularization and reproducing kernels. Kodai Math. J. 28(2), 359–367 (2005)

    Article  MathSciNet  Google Scholar 

  22. Saitoh, S.: Theory of reproducing kernels: applications to approximate solutions of bounded linear operator equations on Hilbert spaces. In book: selected papers on analysis and differential equations. Amer. Math. Soc. Transl. Series 2, Vol. 230 (2010)

  23. Saitoh, S., Sawano, Y.: Theory of reproducing kernels and applications. Developements in mathematics 44, Springer (2016)

  24. Soltani, F.: \(L^p\)-Fourier multipliers for the Dunkl operator on the real line. J. Funct. Anal. 209, 16–35 (2004)

    Article  MathSciNet  Google Scholar 

  25. Soltani, F.: Extremal functions on Sobolev–Dunkl spaces. Integral Transf. Spec. Funct. 24(7), 582–595 (2013)

    Article  MathSciNet  Google Scholar 

  26. Soltani, F.: Multiplier operators and extremal functions related to the dual Dunkl-Sonine operator. Acta Math. Sci. 33B(2), 430–442 (2013)

    Article  MathSciNet  Google Scholar 

  27. Soltani, F.: Uncertainty principles and extremal functions for the Dunkl \(L^2\)-multiplier operators. J. Oper. 2014, Article ID 659069, 9 pages (2014)

  28. Soltani, F.: Extremal functions on Sturm–Liouville hypergroups. Complex Anal. Oper. Theory 8(1), 311–325 (2014)

    Article  MathSciNet  Google Scholar 

  29. Watson, G.N.: A treatise on the theory of Bessel functions. Reprint of the second: edition, p. 1995. Cambridge University Press, Cambridge, Cambridge Mathematical Library (1944)

  30. Weinstein, A.: Singular partial differential equations and their applications. Fluid dynamics and applied mathematics. New York: Gordon and Breach; p. 29–49 (1962)

  31. Yang, L.M.: A note on the quantum rule of the harmonic oscillator. Phys. Rev. 84, 788–790 (1951)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Professor Fethi Soltani is the superviser of Ibrahim Maktouf. Then, this work is solved by Ibrahim Maktouf and it is editing by Professor Fethi Soltani.

Corresponding author

Correspondence to Fethi Soltani.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Soltani, F., Maktouf, I. Dunkl–Weinstein Multiplier Operators and Applications to Reproducing Kernel Theory. Mediterr. J. Math. 21, 80 (2024). https://doi.org/10.1007/s00009-024-02623-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-024-02623-2

Keywords

Mathematics Subject Classification

Navigation