Skip to main content
Log in

Bohr Inequalities for Certain Classes of Harmonic Mappings

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Bohr’s classical theorem and its generalizations are now active areas of research and have been the source of investigations in numerous function spaces. For harmonic mappings of the form \( f=h+\overline{g} \), we obtain an improved version of Bohr inequality for K-quasiregular harmonic mappings in the shifted disk \( \Omega _{\gamma }=\{z\in \mathbb {C}: |z+\frac{\gamma }{1-\gamma }|<\frac{1}{1-\gamma },\; \gamma \in [0,1)\} \) which contains the unit disk \( \mathbb {D} \). In addition, we obtain sharp Bohr inequalities for class of K-quasiconformal harmonic mappings with bounded analytic part.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing is not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Abu-Muhanna, Y.: Bohr’s phenomenon in subordination and bounded harmonic classes. Complex Var. Elliptic Equ. 55, 1071–1078 (2010)

    Article  MathSciNet  Google Scholar 

  2. Abu Muhanna, Y., Ali, R.M., Ng, Z.C., Hasni, S.F.M.: Bohr radius for subordinating families of analytic functions and bounded harmonic mappings. J. Math. Anal. Appl. 420, 124–136 (2014)

    Article  MathSciNet  Google Scholar 

  3. Abu-Muhanna, Y., Ali, R.M., Ponnusamy, S.: On the Bohr inequality. In: Govil, N.K. et al. (ed.) Progress in Approximation Theory and Applicable Complex Analysis, Optimization and Its Applications, vol. 117. Springer, Berlin, pp. 265–295 (2016)

  4. Ahamed, M.B.: The Bohr–Rogosinski radius for a certain class of close-to-convex harmonic mappings. Comput. Methods Funct. Theory (2022). https://doi.org/10.1007/s40315-022-00444-6

  5. Ahamed, M.B.: The sharp refined Bohr–Rogosinski inequalities for certain classes of harmonic mappings. Complex Var. Elliptic Equ. (2022). https://doi.org/10.1080/17476933.2022.2155636

  6. Ahamed, M.B., Ahammed, S.: Bohr–Rogosinski-type inequalities for certain classes of functions: analytic, univalent, and convex. Results Math. 78, 171 (2023)

    Article  MathSciNet  Google Scholar 

  7. Ahamed, M.B., Allu, V.: Harmonic analogue of Bohr phenomenon of certain classes of univalent and analytic functions. Math. Scand. 129(3) (2023). https://doi.org/10.7146/math.scand.a-13964

  8. Ahamed, M.B., Allu, V.: Bohr phenomenon for certain classes of harmonic mappings. Rocky Mt. J. Math. 52(4), 1205–1225 (2022). https://doi.org/10.1216/rmj.2022.52.1205

    Article  MathSciNet  Google Scholar 

  9. Ahamed, M.B., Allu, V.: Bohr–Rogosinski inequalities for certain fully starlike harmonic mappings. Bull. Malays. Math. Sci. Soc. 45, 1913–1927 (2022). https://doi.org/10.1007/s40840-022-01271-7

    Article  MathSciNet  Google Scholar 

  10. Ahamed, M.B., Allu, V., Halder, H.: Bohr radius for certain classes of close-to-convex harmonic mappings. Anal. Math. Phys. 11, 111 (2021)

    Article  MathSciNet  Google Scholar 

  11. Ahamed, M.B., Allu, V., Halder, H.: Improved Bohr inequalities for certain class of harmonic univalent functions. Complex Var. Elliptic Equ. (2021). https://doi.org/10.1080/17476933.2021.1988583

  12. Ahamed, M.B., Allu, V., Halder, H.: The Bohr phenomenon for analytic functions on shifted disks. Ann. Acad. Sci. Fenn. Math. 47, 103–120 (2022)

    Article  MathSciNet  Google Scholar 

  13. Ahlfors, L.: Zur Theorie der überlagerungsflächen. Acta Math. (in German) 65(1), 157–194 (1935). https://doi.org/10.1007/BF02420945

    Article  Google Scholar 

  14. Aizenberg, L.: Multidimensional analogues of Bohr’s theorem on power series. Proc. Amer. Math. Soc. 128, 1147–1155 (2000)

    Article  MathSciNet  Google Scholar 

  15. Aleman, A., Constantin, A.: Harmonic maps and ideal fluid flows. Arch. Rational Mech. Anal. 204, 479–513 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  16. Ali, R.M., Abdulhadi, Z., Ng, Z.C.: The Bohr radius for starlike logharmonic mappings. Complex Var. Elliptic Equ. 61(1), 1–14 (2016)

    Article  MathSciNet  Google Scholar 

  17. Alkhaleefah, S.A., Kayumov, I.R., Ponnusamy, S.: On the Bohr inequality with a fixed zero coefficient. Proc. Amer. Math. Soc. 147, 5263–5274 (2019)

    Article  MathSciNet  Google Scholar 

  18. Allu, V., Halder, H.: Bhor phenomenon for certain subclasses of harmonic mappings. Bull. Sci. Math. 173, 103053 (2021)

    Article  Google Scholar 

  19. Allu, V., Halder, H.: Bohr radius for certain classes of starlike and convex univalent functions. J. Math. Anal. Appl. 493, 124519 (2021)

    Article  MathSciNet  Google Scholar 

  20. Allu, V., Halder, H.: Operator valued analogues of multidimensional Bohr’s inequality. Can. Math. Bull. 65(4), 1020–1035 (2022)

    Article  MathSciNet  Google Scholar 

  21. Bers, L.: Quasiconformal mappings, with applications to differential equations, function theory and topology. Bull. Amer. Math. Soc. 83(6), 1083–1100 (1977). https://doi.org/10.1090/S0002-9904-1977-14390-5

    Article  MathSciNet  Google Scholar 

  22. Bhowmik, B., Das, N.: Bohr phenomenon for subordinating families of certain univalent functions. J. Math. Anal. Appl. 462, 1087–1098 (2018)

    Article  MathSciNet  Google Scholar 

  23. Blasco, O.: The Bohr radius of a Banach space. In: Curbera, G.P., Mockenhaupt, G., Ricker, W.J. (eds.) Vector Measures, Integration and Related Topics, vol. 201, Operator Theory and Advanced Applications. Birkhäuser, Basel, pp. 59–64 (2010)

  24. Boas, H.P., Khavinson, D.: Bohr’s power series theorem in several variables. Proc. Amer. Math. Soc. 125(10), 2975–2979 (1997)

    Article  MathSciNet  Google Scholar 

  25. Bohr, H.: A theorem concerning power series. Proc. Lond. Math. Soc. s2–13, 1–5 (1914)

    Article  MathSciNet  Google Scholar 

  26. Chen, K., Liu, M.-S., Ponnusamy, S.: Bohr-type inequalities for unimodular bounded analytic functions. Results Math. 78, 183 (2023)

    Article  MathSciNet  Google Scholar 

  27. Constantin, A., Martin, M.J.: A harmonic maps approach to fluid flows. Math. Ann. 369, 1–16 (2017)

    Article  MathSciNet  Google Scholar 

  28. Defant, A., Maestre, M., Schwarting, U.: Bohr radii of vector valued holomorphic functions. Adv. Math. 231(5), 2837–2857 (2012)

    Article  MathSciNet  Google Scholar 

  29. Dixon, P.G.: Banach algebras satisfying the non-unital von Neumann inequality. Bull. Lond. Math. Soc. 27(4), 359–362 (1995)

    Article  MathSciNet  Google Scholar 

  30. Djakov, P.B., Ramanujan, M.S.: A remark on Bohr’s theorems and its generalizations. J. Anal. 8, 65–77 (2000)

    MathSciNet  Google Scholar 

  31. Duren, P.L.: Harmonic Mapping in the Plan. Cambridge University Press, New York (2004)

    Book  Google Scholar 

  32. Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for locally univalent harmonic mappings. Indag. Math. (N.S.) 30(1), 201–213 (2019)

    Article  MathSciNet  Google Scholar 

  33. Evdoridis, S., Ponnusamy, S., Rasila, A.: Improved Bohr’s inequality for shifted disks. Results Math. 76, 14 (2021)

    Article  MathSciNet  Google Scholar 

  34. Fournier, R., Ruscheweyh, S.: On the Bohr radius for simply connected plane domains. CRM Proc. Lect. Notes 51, 165–171 (2010)

    Article  MathSciNet  Google Scholar 

  35. Galicer, D., Mansilla, M., Muro, S.: Mixed Bohr radius in several variables. Trans. Amer. Math. Soc. 373(2), 777–796 (2020)

    Article  MathSciNet  Google Scholar 

  36. Ghosh, N., Allu, V.: On a subclass of harmonic close-to-convex mappings. Monatsh. Math. 188, 247–267 (2019)

    Article  MathSciNet  Google Scholar 

  37. González, B.L., Cabana, H.J., García, D., et al.: A new approach towards estimating the n-dimensional Bohr radius. RACSAM 115, 44 (2021). https://doi.org/10.1007/s13398-020-00986-1

    Article  MathSciNet  Google Scholar 

  38. Graham, I., Kohr, G.: Geometric Function Theory in One and Higher Dimensions, Monographs and Textbooks in Pure and Applied Mathematics, 255. Marcel Dekker Inc, New York (2003)

    Google Scholar 

  39. Grötzsch, H.: Über einige Extremalprobleme der konformen Abbildung. I, II., Berichte über die Verhandlungen der Königlich Sächsischen Gesellschaft der Wissenschaften zu Leipzig. Mathematisch-Physische Classe (in German) 80, 367–376, 497–502 (1928)

  40. Hamada, H., Honda, T., Kohr, G.: Bohr’s theorem for holomorphic mappings with values in homogeneous balls. Isr. J. Math. 173, 177 (2009)

  41. Huang, Y., Liu, M.-S., Ponnusamy, S.: Bohr-type inequalities for harmonic mappings with a multiple zero at the origin. Mediterr. J. Math. 18, 75 (2021)

    Article  MathSciNet  Google Scholar 

  42. Ismagilov, A., Kayumov, I.R., Ponnusamy, S.: Sharp Bohr type inequality. J. Math. Anal. Appl. 489, 124147 (2020)

    Article  MathSciNet  Google Scholar 

  43. Kalaj, D.: Quasiconformal harmonic mapping between Jordan domains. Math. Z. 260(2), 237–252 (2008)

    Article  MathSciNet  Google Scholar 

  44. Kayumov, I.R., Khammatova, D.M., Ponnusamy, S.: Bohr–Rogosinski phenomenon for analytic functions and Cesaro operators. J. Math. Anal. Appl. 496, 124824 (2021)

    Article  MathSciNet  Google Scholar 

  45. Kayumov, I.R., Ponnusamy, S.: Bohr’s inequalities for the analytic functions with Lacunary series and harmonic functions. J. Math. Anal. Appl. 465, 857–871 (2018)

    Article  MathSciNet  Google Scholar 

  46. Kayumov, I.R., Ponnusamy, S.: On a powered Bohr inequality. Ann. Acad. Sci. Fenn. Ser. A 44, 301–310 (2019)

    MathSciNet  Google Scholar 

  47. Kayumov, I.R., Ponnusamy, S.: Improved version of Bohr’s inequalities. C. R. Math. Acad. Sci. Paris 358(5), 615–620 (2020)

    MathSciNet  Google Scholar 

  48. Kayumov, I.R., Ponnusamy, S., Shakirov, N.: Bohr radius for locally univalent harmonic mappings. Math. Nachr. 291, 1757–1768 (2018)

    Article  MathSciNet  Google Scholar 

  49. Kumar, S.: A generalization of the Bohr inequality and its applications. Complex Var. Elliptic Equ. (2022). https://doi.org/10.1080/17476933.2022.2029853

  50. Lehto, O., Virtanen, K.I.: Quasiconformal Mapping in the Plane. Springer, Berlin (1973)

    Book  Google Scholar 

  51. Lin, R., Liu, M.-S., Ponnusamy, S.: The Bohr-type inequalities for holomorphic mappings with a Lacunary series in several complex variables. Acta Math. Sci. 43B(1), 63–79 (2023)

    Article  MathSciNet  Google Scholar 

  52. Liu, G., Liu, Z., Ponnusamy, S.: Refined Bohr inequality for bounded analytic functions. Bull. Sci. Math. 173, 103054 (2021)

    Article  MathSciNet  Google Scholar 

  53. Liu, M.-S., Ponnusamy, S., Wang, J.: Bohr’s phenomenon for the classes of Quasi-subordination and K-quasiregular harmonic mappings. RACSAM 114, 115 (2020). https://doi.org/10.1007/s13398-020-00844-0

    Article  MathSciNet  Google Scholar 

  54. Liu, Z., Ponnusamy, S.: Bohr radius for subordination and \( K \)-quasiconformal harmonic mappings. Bull. Malays. Math. Sci. Soc. 42, 2151–2168 (2019)

    Article  MathSciNet  Google Scholar 

  55. Liu, M.-S., Ponnusamy, S.: Multidimensional analogues of refined Bohr’s inequality. Porc. Amer. Math. Soc. 149(5), 2133–2146 (2021)

    Article  MathSciNet  Google Scholar 

  56. Martio, O.: On harmonic quasiconformal mappings. Ann. Acad. Sci. Fenn. A I(425), 3–10 (1968)

    Google Scholar 

  57. Partyka, D., Sakan, K., Zhu, J.-F.: Quasiconformal harmonic mapping with the convex holomorphic part. Ann. Acad. Sci. Fenn. Math. 43, 401–418 (2018)

    Article  MathSciNet  Google Scholar 

  58. Paulsen, V.I., Singh, D.: Bohr’s inequality for uniform algebras. Proc. Amer. Math. Soc. 132, 3577–3579 (2004)

    Article  MathSciNet  Google Scholar 

  59. Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: New inequalities for the coefficients of unimodular bounded functions. Results Math. 75, 107 (2020)

    Article  MathSciNet  Google Scholar 

  60. Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: Modifications of Bohr’s inequality in various settings. Houst. J. Math. https://arxiv.org/pdf/2104.05920.pdf (2021) (to appear)

  61. Ponnusamy, S., Vijayakumar, R., Wirths, K.-J.: Improved Bohr’s phenomenon in quasisubordination classes. J. Math. Anal. Appl. 506(1), 125645 (2022)

    Article  Google Scholar 

  62. Ponnusamy, S., Vijayakumar, R.: Note on improved Bohr inequality for harmonic mappings. In: Lecko, A., Thomas, D.K. (eds.) Current Research in Mathematical and Computer Sciences III. UWM, Olsztyn, pp. 353–360 (2022). arXiv:2104.06717

Download references

Acknowledgements

The authors are greatly indebted to the anonymous referees for their elaborate comments and valuable suggestions, which improve significantly the presentation of the paper. The first author is supported by SERB, SUR/2022/002244, Govt. India and the second author is supported by UGC-JRF (NTA Ref. No.: 201610135853), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Molla Basir Ahamed.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahamed, M.B., Ahammed, S. Bohr Inequalities for Certain Classes of Harmonic Mappings. Mediterr. J. Math. 21, 21 (2024). https://doi.org/10.1007/s00009-023-02564-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02564-2

Keywords

Mathematics Subject Classification

Navigation