Skip to main content
Log in

Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We compute the centred Hausdorff measure, \(C^{s}(\textbf{P})\sim 2.44\), and the packing measure, \(P^{s}(\textbf{P})\sim 6.77\), of the penta-Sierpinski gasket, \(\textbf{P}\), with explicit error bounds. We also compute the full spectra of asymptotic spherical densities of these measures in \(\textbf{P}\), which, in contrast with that of the Sierpinski gasket, consists of a unique interval. These results allow us to compute the irregularity index of \(\textbf{P}\), \(\mathcal {I}(\textbf{P})\sim 0.6398\), which we define for any self-similar set E with open set condition as \(\mathcal {I}(E)=1-\frac{C^{s}(E)}{P^{s}(E)}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Barnsley, M.F.: Fractals Everywhere. Courier Corporation, Chelmsford (2012)

    MATH  Google Scholar 

  2. Berry, M.V., Lewis, Z.V., Nye, J.F.: On the Weierstrass-Mandelbrot fractal function. Proc. R. Soc. Lond. Ser. A 370, 459–484 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  3. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications. Wiley, Chichester (2014)

    MATH  Google Scholar 

  4. Flake, G.W.: The Computational Beauty of Nature: Computer Explorations of Fractals, Chaos, Complex Systems, and Adaptation. MIT Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Guariglia, E.: Harmonic Sierpinski gasket and applications. Entropy 20(9), 714 (2018)

    Article  MathSciNet  Google Scholar 

  6. Guariglia, E.: Primality, fractality and image analysis. Entropy 21(3), 304 (2019)

    Article  MathSciNet  Google Scholar 

  7. Guariglia, E., Silvestrov, S.: Fractional-wavelet analysis of positive definite distributions and wavelets on D’(C). In: Silvestrov, S., Rancic, M. (eds.) Engineering Mathematics II: Algebraic, Stochastic and Analysis Structures for Networks, Data Classification and Optimization, pp. 337–353. Springer, Cham (2016)

    Chapter  MATH  Google Scholar 

  8. Hausdorff, F.: Dimension und äusseres. Math. Ann. 79, 157–179 (1919)

    Article  MATH  Google Scholar 

  9. Hentschel, H.G.E., Procaccia, I.: The infinite number of generalized dimensions of fractals and strange attractors. Physica D 8(3), 435–444 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hutchinson, J.E.: Fractals and self-similarity. Ind. J. Math. 30, 713–747 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kubacki, R., Czyżewski, M., Laskowski, D.: Minkowski island and crossbar fractal microstrip antennas for broadband applications. Appl. Sci. 8, 334 (2018)

    Article  Google Scholar 

  12. Lalley, S.P.: The packing and covering functions of some self-similar fractals. Indiana Univ. Math. J. 37(3), 699–710 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Llorente, M., Morán, M.: Self-similar sets with optimal coverings and packings. J. Math. Anal. Appl. 334(2), 1088–1095 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Llorente, M., Morán, M.: Advantages of the centered Hausdorff measure from the computability point of view. Math. Scand. 107(1), 103–122 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Llorente, M., Morán, M.: An algorithm for computing the centered Hausdorff measures of self-similar sets. Chaos Solitons Fractals 45(3), 246–255 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Llorente, M., Morán, M.: Computability of the packing measure of totally disconnected self-similar sets. Ergod. Theory Dyn. Syst. 36(5), 1534–1556 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Llorente, M., Mera, M.E., Morán, M.: Rate of convergence: the packing and centered Hausdorff measures of totally disconnected self-similar sets. Chaos Solitons Fractals 98, 220–232 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Llorente, M., Mera, M.E., Morán, M.: On the packing measure of the Sierpinski gasket. Nonlinearity 31, 2571–2589 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  19. Llorente, M., Mera, M.E., Morán, M.: On the centered Hausdorff measure of the Sierpinski gasket. Fractals (2023). https://doi.org/10.1142/S0218348X23501074

    Article  MATH  Google Scholar 

  20. Mandelbrot, B.: The Fractal Geometry of Nature. Times Books, New York (1982)

    MATH  Google Scholar 

  21. Marstrand, J.M.: The \((\phi, s)\) regular subsets of \(n\) space. Trans. Am. Math. Soc. 113, 369–392 (1964)

    MathSciNet  MATH  Google Scholar 

  22. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, Cambridge (1995)

    Book  MATH  Google Scholar 

  23. Morán, M.: Dynamical boundary of a self-similar set. Fundam. Math. 160(1), 1–14 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Morán, M.: Computability of the Hausdorff and packing measures on self-similar sets and the self-similar tiling principle. Nonlinearity 18(2), 559–570 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  25. Morán, M., Llorente, M., Mera, M.E.: Local geometry of self-similar sets: typical balls, tangent measures and asymptotic spectra. Fractals 31(5), 2350059 (2023)

    Article  MATH  Google Scholar 

  26. Moran, P.: Additive functions of intervals and Hausdorff measure. Math. Proc. Camb. Philos. Soc. 42(1), 15–23 (1946)

    Article  MathSciNet  MATH  Google Scholar 

  27. Saint Raymond, X., Tricot, C.: Packing regularity of sets in \( n\)-space. Math. Proc. Camb. Philos. Soc. 103(1), 133–145 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  28. Salli, A.: Upper Density Properties of Hausdorff Measures on Fractals. Volume 55 of Annales Academiae Scientiarum Fennicae: Mathematica. Suomalainen Tiedeakatemia, Helsinki (1985)

    Google Scholar 

  29. Schief, A.: Separation properties for self-similar sets. Proc. Am. Math. Soc. 122(1), 111–115 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  30. Tricot, C.: Rectifiable and fractal sets. In: Bélair, J., Dubuc, S. (eds.) Fractal Geometry and Analysis. NATO ASI Series, vol. 346, pp. 364–403. Kluber, Dordrecht (1991)

    Google Scholar 

  31. Yu, B., Li, J.: Some fractal characters of porous media. Fractals 9(3), 365–372 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Universidad Complutense de Madrid and the Banco de Santander (PR108/20-14).

Author information

Authors and Affiliations

Authors

Contributions

All the authors wrote the main manuscript, designed the codes, prepared figures and tables and reviewed the manuscript.

Corresponding author

Correspondence to Manuel Morán.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mera, M.E., Morán, M. Irregularity Index and Spherical Densities of the Penta-Sierpinski Gasket. Mediterr. J. Math. 20, 322 (2023). https://doi.org/10.1007/s00009-023-02528-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02528-6

Keywords

Mathematics Subject Classification

Navigation