Skip to main content
Log in

Regularity of General Maximal and Minimal Functions

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, our object of investigation is the endpoint regularity of the following general maximal operator,

$$\begin{aligned}{} & {} \widetilde{\mathcal {M}}_\Phi f(x)=\sup \limits _{r,s\ge 0\atop r+s>0}\Phi (r+s)\int _{x-r}^{x+s}|f(y)|\textrm{d}y, \end{aligned}$$

and minimal operator,

$$\begin{aligned}{} & {} \widetilde{m}_\Phi f(x)=\inf \limits _{r,s\ge 0\atop r+s>0}\Phi (r+s)\int _{x-r}^{x+s}|f(y)|\textrm{d}y, \end{aligned}$$

where \(\Phi (t):(0,\infty )\rightarrow (0,\infty )\) is a non-increasing continuous function and satisfies \(B_q:=\sup _{t>0}t\Phi (t)^q<\infty \) for some \(q\ge 1\). We prove that if \(f:\mathbb {R}\rightarrow \mathbb {R}\) is a function of bounded variation, then

$$\begin{aligned}{} & {} \max \{\textrm{Var}_q(\widetilde{\mathcal {M}}_\Phi f),\textrm{Var}_q(\widetilde{m}_\Phi f)\}\le (8B_q)^{1/q}\textrm{Var}(f). \end{aligned}$$

Here, \(\textrm{Var}_q(f)\) denotes the q-variation of f and \(\textrm{Var}_q(f)=\textrm{Var}(f)\) when \(q=1\). Similar results are proved for the discrete versions of the above operators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aldaz, J.M., Pérez Lázaro, J.: Functions of bounded variation, the derivative of the one dimensional maximal function, and applications to inequalities. Trans. Am. Math. Soc. 359(5), 2443–2461 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Beltran, D., Madrid, J.: Regularity of the centered fractional maximal function on radial functions. J. Funct. Anal. 279(8), 108686 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  3. Beltran, D., Madrid, J.: Endpoint Sobolev continuity of the fractional maximal function in higher dimensions. Int. Math. Res. Not. 2021(22), 17316–17342 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  4. Beltran, D., González-Riquelme, C., Madrid, J., Weigt, J.: Continuity of the gradient of the fractional maximal operator on \(W^{1,1}(\mathbb{R}^d)\), arXiv:2102.10206v1

  5. Beltran, D., Ramos, J. Pedro., Saari, O.: Regularity of fractional maximal functions through Fourier multipliers, J. Funct. Anal. 276(6), 1875–1892 (2019)

  6. Bober, J., Carneiro, E., Hughes, K., Pierce, L.B.: On a discrete version of Tanaka’s theorem for maximal functions. Proc. Am. Math. Soc. 140(5), 1669–1680 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carneiro, E., Madrid, J.: Derivative bounds for fractional maximal functions. Trans. Am. Math. Soc. 369(6), 4063–4092 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Carneiro, E., Madrid, J., Pierce, L.B.: Endpoint Sobolev and BV continuity for maximal operators. J. Funct. Anal. 273(10), 3262–3294 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  9. Carneiro, E., Moreira, D.: On the regularity of maximal operators. Proc. Am. Math. Soc. 136(12), 4395–4404 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cruz-Uribe, D.S.F.O., Neugebauer, C.J.: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347, 2941–2960 (1995)

    MATH  Google Scholar 

  11. Cruz-Uribe, D.S.F.O., Neugebauer, C.J., Olesen, V.: Norm inequalities for the minimal operator and maximal operator, and differentiation of the integral. Publ. Mat. 41, 577–604 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hajłasz, P., Onninen, J.: On boundedness of maximal functions in Sobolev spaces. Ann. Acad. Sci. Fenn. Math. 29, 167–176 (2004)

    MathSciNet  MATH  Google Scholar 

  13. Kinnunen, J.: The Hardy-Littlewood maximal function of a Sobolev function. Israel J. Math. 100, 117–124 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kinnunen, J., Lindqvist, P.: The derivative of the maximal function. J. Reine. Angew. Math. 503, 161–167 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Kinnunen, J., Saksman, E.: Regularity of the fractional maximal function. Bull. Lond. Math. Soc. 35(4), 529–535 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurka, O.: On the variation of the Hardy-Littlewood maximal function. Ann. Acad. Sci. Fenn. Math. 40, 109–133 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Liu, F., Wu, H.: Endpoint regularity of multisublinear fractional maximal functions. Canad. Math. Bull. 60(3), 586–603 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Liu, F., Xue, Q., Yabuta, K.: Regularity and continuity of the multilinear strong maximal operators. J. Math. Pures Appl. 138, 204–241 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Luiro, H.: Continuity of the maixmal operator in Sobolev spaces. Proc. Am. Math. Soc. 135(1), 243–251 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Luiro, H.: The variation of the maximal function of a radial function. Ark. Mat. 56(1), 147–161 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  21. Luiro, H., Madrid, J.: The variation of the fractional maximal function of a radial function. Int. Math. Res. Not. 17, 5284–5298 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  22. Natanson, L.P.: Theory of Functions of a Real Variable. Frederick Ungar Publishing Co., New York (1950)

    Google Scholar 

  23. Tanaka, H.: A remark on the derivative of the one-dimensional Hardy-Littlewood maximal function. Bull. Austral. Math. Soc. 65(2), 253–258 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  24. Temur, F.: On regularity of the discrete Hardy–Littlewood maximal function, arXiv:1303.3993

  25. Weigt, J.: The variation of the uncentered maximal operator with respext to cubes, arXiv:2109.10747v1

  26. Weigt, J.: Endpoint Sobolev bounds for fractional Hardy-Littlewood maximal operators. Math. Z. 301(3), 2317–2337 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  27. Zhang, X.: Endpoint regularity of the discrete multisublinear fractional maximal operators. Results Math. 76(2), 1–21 (2021)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors want to express their sincerely thanks to the referees for their valuable remarks and suggestions, which made this paper more readable.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported partly by the Natural Science Foundation of Shandong Province (Grant No. ZR2023MA022) and National Natural Science Foundation of China (Grant No. 11701333).

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Liu, F. Regularity of General Maximal and Minimal Functions. Mediterr. J. Math. 20, 283 (2023). https://doi.org/10.1007/s00009-023-02485-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02485-0

Keywords

Mathematics Subject Classification

Navigation