Skip to main content
Log in

New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We introduce new versions of uniformly convex functions, namely \(h_d\) strongly (weaker) convex functions. Based on the positivity of complete homogeneous symmetric polynomials with even degree, recently studied in Rovenţa and Temereanc (Mediterr J Math 16:1–16, 2019), Rovenţa et al. (A note on weighted Ingham’s inequality for families of exponentials with no gap, In: 24th ICSTCC, pp 43–48, 2020; Weighted Ingham’s type inequalities via the positivity of quadratic polynomials, submitted), and Tao (https://terrytao.wordpress.com/2017/08/06/schur-convexity-and-positive-definiteness-of-the-even-degree-co-mplete-homogeneous-symmetric-polynomials/), we introduce stronger and weaker versions of uniformly convexity. In this context, we recover well-known type inequalities such as: Jensen’s, Hardy–Littlewood–Polya’s and Popoviciu’s inequalities. Some final remarks related to Sherman’s and Ingham’s type inequalities are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

The authors declare that data supporting the findings of this study are available within the article and its supplementary information files.

References

  1. Abramovich, S., Ivelić, S., Pec̆arić, J.E.: Improvement of Jensen–Steffensen’s inequality for superquadratic functions. Banach J. Math. Anal 4, 159–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Abramovich, S.: New inequalities related to superquadratic functions. Aequ. Math. 96, 201–2019 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  3. Abramovich, S.: Refinements of Jensen’s inequality by uniformly convex functions. Aequ. Math. 97, 75–88 (2023)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aguilar, K., Chávez, Á., Garcia, S., Volc̆ic̆, J.: Norms on complex matrices induced by complete homogeneous symmetric polynomials. Bull. Lond. Math. Soc 54, 2078–2100 (2022)

    Article  MathSciNet  Google Scholar 

  5. Cindea, N., Micu, S., Rovenţa, I.: Boundary controllability for finite-difference semi-discretizations of a clamped beam equation. SIAM J. Control. Optim. 55, 785–817 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chávez, Á., Garcia, S., Hurley, J.: Norms on complex matrices induced by random vectors. Can. Math. Bull. 1–19 (2022)

  7. Clim, A.: Some inequalities for convexifiable function with applications. Proc. Rom. Acad. A 11(3), 218–223 (2010)

    MathSciNet  MATH  Google Scholar 

  8. Hunter, D.B.: The positive-definiteness of the complete symmetric functions of even order. Math. Proc. Camb. Philos. Soc. 82(2), 255–258 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ingham, A.E.: Some trigonometrical inequalities with applications to the theory of series. Math. Z. 41, 367–369 (1936)

    Article  MathSciNet  MATH  Google Scholar 

  10. Jaffard, S., Micu, S.: Estimates of the constants in generalized Ingham’s inequality and applications to the control of the wave equation. Asymptot. Anal. 28, 181–214 (2001)

    MathSciNet  MATH  Google Scholar 

  11. Jaffard, S., Tucsnak, M., Zuazua, E.: On a theorem of Ingham. J. Fourier Anal. Appl. 3, 577–582 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kahane, J.P.: Pseudo-Périodicité et Séries de Fourier Lacunaires. Ann. Scient. Ec. Norm. Sup. 37, 93–95 (1962)

    Article  MATH  Google Scholar 

  13. Khan, M.A., Niezgoda, M., Pec̆arić, J.E.: On a refinement of the majorisation type inequality. Demonstr. Math. 44, 49–57 (2011)

    MathSciNet  MATH  Google Scholar 

  14. Khan, M.A.: Majorization theorem for convexifiable functions. Math. Commun. 18, 61–65 (2013)

    MathSciNet  MATH  Google Scholar 

  15. Klaric̆ić Bakula, M.: Jensen–Steffensen inequality for strongly convex functions. J. Inequal. Appl 306, 306 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lchescu, G..M., Rovenţa, I.: The Hardy–Littlewood–Pólya inequality of majorization in the context of \(\varvec {\omega }\)-\(\textbf{m}\)-star-convex functions. Aequ. Math. 97, 523–535 (2023)

    Article  Google Scholar 

  17. Lissy, P., Rovenţa, I.: Optimal filtration for the approximation of boundary controls for the one-dimensional wave equation using finite-difference method. Math. Comput. 88, 273–291 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lissy, P., Rovenţa, I.: Optimal approximation of internal controls for a wave-type problem with fractional Laplacian using finite-difference method. Math. Models Methods Appl. Sci. 30, 439–475 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  19. Marshall, A.W., Olkin, I., Arnold, B.: Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics, 2nd edn. Springer, New York (2011)

    Book  MATH  Google Scholar 

  20. Niculescu, C.P.: A new look at the Hardy–Littlewood–Polya inequality of majorization. J. Math. Anal. Appl. 501, 125211 (2021)

    Article  MATH  Google Scholar 

  21. Niculescu, C..P., Olteanu, O.: From the Hahn–Banach extension theorem to the isotonicity of convex functions and the majorization theory. Rev. R. Acad. Cienc. Exactas Fís. Nat. Ser. A Math. RACSAM 114, 1–19 (2020)

    MathSciNet  MATH  Google Scholar 

  22. Niculescu, C. P., Persson, L.-E.: Convex Functions and Their Applications. A Contemporary Approach, 2nd ed., CMS Books in Mathematics, vol. 23. Springer, New York (2018)

  23. Niculescu, C.P., Popovici, F.: The extension of majorization inequalities within the framework of relative convexity. JIPAM 7, 6 (2006). (Electronic only)

    MathSciNet  MATH  Google Scholar 

  24. Niculescu, C.P., Rovenţa, I.: An approach of majorization in spaces with a curved geometry. J. Math. Anal. Appl. 411, 119–128 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  25. Niculescu, C.P., Rovenţa, I.: Relative Schur convexity on global NPC spaces. Math. Inequal. Appl. 18, 1111–1119 (2015)

    MathSciNet  MATH  Google Scholar 

  26. Niezgoda, M.: Linear maps preserving group majorization. Linear Algebra Appl. 330, 113–127 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  27. Niezgoda, M.: Majorization and refined Jensen Mercer type inequalities for self-adjoint operators. Linear Algebra Appl. 467, 1–14 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  28. Niezgoda, M.: Nonlinear Sherman-type inequalities. Adv. Nonlinear Anal. 9, 168–175 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  29. Nikodem, K., Páles, Z.: Characterization of inner product spaces by strongly convex functions. Banach J. Math. Anal. 5(1), 83–87 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nikodem, K., Rajba, T., Wasowicz, S.: Functions generating strongly Schur-convex sums. In: Inequalities and Applications, International Series of Numerical Mathematics, vol. 161, pp. 175–182. Springer, Basel (2012)

  31. Polyak, B.T.: Existence theorems and convergence of minimizing sequences in extremum problems with restrictions. Dokl. Akad. Nauk. SSSR 166, 287–290 (1966). (Russian)

    MathSciNet  Google Scholar 

  32. Rovenţa, I., Temereanc, L.E.: A note on the positivity of the even degree complete homogeneous symmetric polynomials. Mediterr. J. Math. 16, 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  33. Rovenţa, I., Temereanca, L.E., Tudor, A.M.: A note on weighted Ingham’s inequality for families of exponentials with no gap. In: 24th ICSTCC, pp. 43–48 (2020)

  34. Rovenţa, I., Temereanca, L.E., Tudor, A.M.: Weighted Ingham’s type inequalities via the positivity of quadratic polynomials (submitted)

  35. Tao, T.: https://terrytao.wordpress.com/2017/08/06/schur-convexity-and-positive-definiteness-of-the-even-degree-complete-homogeneous-symmetric-polynomials/

  36. Zǎlinescu, C.: On uniformly convex functions. J. Math. Anal. Appl. 95, 344–374 (1983)

  37. Zlobec, S.: Jensen’s inequality for nonconvex functions. Math. Commun. 9, 119–124 (2004)

    MathSciNet  MATH  Google Scholar 

  38. Zlobec, S.: Convexifiable functions in integral calculus. Glas. Mat. 40(60), 241–247 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  39. Zuazua, E.: Propagation, observation, and control of waves approximated by finite difference methods. SIAM Rev. 47, 197–243 (2005)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The work of G. M. Lăchescu, M. Malin and I. Rovenţa has been supported by a grant of the Romanian Ministry of Research, Innovation and Digitalization (MCID), project number 22–Nonlinear Differential Systems in Applied Sciences, within PNRR-III-C9-2022-I8.

Author information

Authors and Affiliations

Authors

Contributions

All the authors have contributed equally.

Corresponding author

Correspondence to Ionel Rovenţa.

Ethics declarations

Conflict of Interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lăchescu, G.M., Malin, M. & Rovenţa, I. New Versions of Uniformly Convex Functions via Quadratic Complete Homogeneous Symmetric Polynomials. Mediterr. J. Math. 20, 279 (2023). https://doi.org/10.1007/s00009-023-02484-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02484-1

Keywords

Mathematics Subject Classification

Navigation