Skip to main content
Log in

Measurement and Calculation on Conformable Surfaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this study, some basic concepts related to the surface are examined with the help of conformable fractional analysis. As known, the best thing that makes fractional analysis popular is that it gives numerically more approximate results compared to classical analysis. For this reason, the concepts that enable us to make calculations based on the measurement on the surface have been redefined to give more numerical results with conformable fractional analysis. In addition, with the help of fractional analysis, it is explained which concepts are changed or not. Finally, an example is given to better understand the obtained results and its graph is drawn with the help of Mathematica. The reason for using conformable fractional analysis in this study is that it is more suitable for the algebraic structure of differential geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Abdeljawad, A.: On Conformable Fractional Calculus. J. Comput. Appl. Math. 27(9), 57–66 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aydin, M.E., Mihai, A.: A note on surfaces in space forms with pythagorean fundamental forms. Mathematics 8(3), 444 (2020)

    Article  Google Scholar 

  3. Bagley, R., Torvik, P.J.: A theoretical basis for the application of fractional calculus to viscoelasticity. J. Rheol. 27(3), 201–210 (1983)

    Article  MATH  Google Scholar 

  4. Baleanu, D., Trujillo, J.J.: A new method of finding the fractional Euler Lagrange and Hamilton equations within Caputo fractional derivatives. Commun. Nonlinear Sci. Numerical Simul. 15(5), 1111–1115 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bas, E., Ozarslan, R.: Real world applications of fractional models by Atangana-Baleanu fractional derivative. Chaos Solit. Frac. 116, 121–125 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bar, C.: Elementary Differential Geometry. Cambridge University Press, New York (2010)

    Book  MATH  Google Scholar 

  7. Cvetkovic, M., Velimirović, L.S.: Application of shape operator under infinitesimal bending of surface. Filomat 33(4), 1267–1271 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dalir, M., Bashour, M.: Applications of fractional calculus. Appl. Math. Sci. 21, 1021–1032 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Do Carmo, M.P.: Differential Geometry of Curves and Surfaces. Dover Publications INC, New York (2016)

    MATH  Google Scholar 

  10. Espindola, J.D., Bavastri, C., Oliveira Lopes, E.D.: Design of optimum systems of viscoelastic vibration absorbers for a given material based on the fractional calculus model. J. Vib. Control 14(9–10), 1607–1630 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gauss, K.F.: General Investigations of Curved Surfaces, (1825)

  12. Gozutok, U., Coban, H.A., Sagiroglu, Y.: Frenet frame with respect to conformable derivative. Filomat 33(6), 1541–1550 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gray, A., Abbena, E., Salamon, S.: Modern Differential Geometry of Curves and Surfaces with Mathematica. CRC Press Inc., United States (2006)

    MATH  Google Scholar 

  14. Guzman, P.M., Langton, G., Bittencurt, L.M.L.M., Medina, J., Valdes, J.E.N.: A new definition of a fractional derivative of local type. J. Math. Anal. 9(2), 88–98 (2018)

    MathSciNet  Google Scholar 

  15. Has, A., Yılmaz, B.: Special fractional curve pairs with fractional calculus. Int. Electron. J. Geometry 15(1), 132–144 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  16. Has, A., Yılmaz, B., Akkurt, A., Yıldırım, H.: Conformable special curve in euclidean 3-space. Filomat 36(14), 4687–4698 (2022)

    Article  MathSciNet  Google Scholar 

  17. Has, A., Yılmaz, B.: Effect of fractional analysis on magnetic curves. Revista Mexicana de Fisica 68(49), 041401 (2022)

    MathSciNet  Google Scholar 

  18. Hilfer, R.: Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  MATH  Google Scholar 

  19. Khalil, R., Horani, M., Yousef, A., Sababheh, M.: A new definition of fractional derivative. J. Comput. Appl. Math. 264, 65–70 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lazopoulos, K., Lazopoulos, A.K.: Fractional differential geometry of curves and surfaces. Progr. Fract. Differ. Appl. 2(3), 169–186 (2016)

    Article  MATH  Google Scholar 

  21. Lockerby, D.A.: Integration over discrete closed surfaces using the Method of Fundamental Solutions. Eng. Anal. Bound. Elements 136(6), 232–237 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  22. Loverro, A.: Fractional Calculus. Defination and Applications for the Engineer, Univeristy of Notre Dame, USA, History (2004)

    Google Scholar 

  23. Malin, M., Mardare, C.: Nonlinear estimates for hypersurfaces in terms of their fundamental forms. Comptes Rendus Mathematique 355(11), 1196–1200 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Miller, K.S., Ross, B.: An introduction to the fractional calculus and fractional differential equations. A Wiley-Interscience Publicaiton, New York (1993)

    MATH  Google Scholar 

  25. Mhailan, M., Abu Hammad, M., Al Horani, M., Khalil, R.: On fractional vector analysis. J. Math. Comput. Sci. 10(6), 2320–2326 (2020)

    Google Scholar 

  26. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  27. O’Neill, B.: Sem-Riemannian Geometry. Academic press, New York (1983)

    Google Scholar 

  28. Ozdemir, M.: Differantial Geometry. Altı Nokta Press, Izmir (2020)

    Google Scholar 

  29. Pawar, D.D., Raut, D.K., Patil, W.D.: An approach to Riemannian geometry within conformable fractional derivative. Prespacetime J. 9(9), 989–1003 (2018)

    Google Scholar 

  30. Ray, N., Wang, D., Jiao, X., Glimm, J.: High-order numerical integration over discrete surfaces. SIAM J. Numer. Anal. 50(6), 3061–3083 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sidi, A.: Analysis of Atkinson’s variable transformation for numerical integration over smooth surfaces in \(\mathbb{R} ^3\). Numerische Mathematik 100(3), 519–536 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  32. Stojiljkovic, V.: A new conformable fractional derivative and applications. Selecciones Matemáticas 9(02), 370–380 (2022)

    Article  MathSciNet  Google Scholar 

  33. Syouri, S.T.R., Sulaiman, I.M., Mamat, M., Abas, S.S., Ahmad, M.Z.: Conformable fractional derivative and its application to partial fractional derivatives. J. Math. Comput. Sci. 11, 3027–3036 (2021)

    Google Scholar 

  34. Yajima, T., Yamasaki, K.: Geometry of surfaces with Caputo fractional derivatives and applications to incompressible two-dimensional flows. J. Phys. A Math. Theoretical 45(6), 065201 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  35. Yılmaz, B., Has, A.: Obtaining fractional electromagnetic curves in optical fiber using fractional alternative moving frame. Optik 260, 169067 (2022)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the referees and the editor for their valuable comments.

Funding

There is no funding.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed jointly to the article.

Corresponding author

Correspondence to Aykut Has.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests as defined by Springer, or other interests that might be perceived to influence the results and/or discussion reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Has, A., Yılmaz, B. Measurement and Calculation on Conformable Surfaces. Mediterr. J. Math. 20, 274 (2023). https://doi.org/10.1007/s00009-023-02471-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02471-6

Keywords

Mathematics Subject Classification

Navigation