Skip to main content
Log in

\(H^1\)\(L^1\) Boundedness of Pseudo-differential Operators with Forbidden Amplitudes

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this note, we consider a pseudo-differential operator \(T_a\) defined as

$$\begin{aligned} T_a f(x)=\int _{{\mathbb {R}}^n}\int _{{\mathbb {R}}^n}\textrm{e}^{2\pi i(x-y)\cdot \xi }a(x,y,\xi )f(y)\textrm{d}\xi \textrm{d}y. \end{aligned}$$

If \(0\le \rho ,\delta <1\) and \(a(x,y,\xi )\) satisfies that

$$\begin{aligned} \sup _{y,\xi \in {\mathbb {R}}^{n}}(1+|\xi |)^{n(1-\rho )+\rho N-\delta M}\Vert \nabla ^{N}_{\xi }\nabla ^{M}_{y}a(\cdot ,y,\xi )\Vert _{L^\infty ({\mathbb {R}}^n)}<+\infty \end{aligned}$$

for any \(N\le n+1\) and \(M\le 1\), then we show that the pseudo-differential operator \(T_{a}\) is bounded from \(H^1\) to \(L^1\). However, this result is not true if \(\rho =1\) or \(\delta =1\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The document has no associated data.

References

  1. Álvarez, J., Hounie, J.: Estimates for the kernel and continuity properties of pseudo-differential operators. Ark. Mat. 28(1), 1–22 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  2. Calderón, A.P., Vaillancourt, R.: On the boundedness of pseudo-differential operators. J. Math. Soc. Jpn. 23, 374–378 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  3. Calderón, A.P., Vaillancourt, R.: A class of bounded pseudo-differential operators. Proc. Natl. Acad. Sci. USA 69, 1185–1187 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ching, C.H.: Pseudo-differential operators with nonregular symbols. J. Differ. Equ. 11, 436–447 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  5. Guo, J., Zhu, X.: Some notes on endpoint estimates for pseudo-differential operators. Mediterr. J. Math. 19(6), Paper No. 260 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  6. Hörmander, L.: Pseudo-differential operators. Commun. Pure Appl. Math. 18, 501–517 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hörmander, L., Pseudo-differential operators and hypoelliptic equations. In: Singular Integrals (Proceedings of the Symposium of Pure Mathematics, Vol. X, Chicago, Ill., 1967), pp. 138–183. American Mathematical Society, Providence, RI (1966)

  8. Hörmander, L.: On the \(L^{2}\) continuity of pseudo-differential operators. Commun. Pure Appl. Math. 24, 529–535 (1971)

    Article  MATH  Google Scholar 

  9. Hounie, J.: On the \(L^2\)-continuity of pseudo-differential operators. Commun. Partial Differ. Equ. 11(7), 765–778 (1986)

    Article  MATH  Google Scholar 

  10. Kenig, C.E., Staubach, W.: \(\Psi \)-pseudodifferential operators and estimates for maximal oscillatory integrals. Stud. Math. 183(3), 249–258 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kohn, J.J., Nirenberg, L.: An algebra of pseudo-differential operators. Commun. Pure Appl. Math. 18, 269–305 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  12. Rodino, L.: On the boundedness of pseudo differential operators in the class \(L^{m}_{\rho ,1}\). Proc. Am. Math. Soc. 58, 211–215 (1976)

    MATH  Google Scholar 

  13. Ruan, J., Zhu, X.: \(L^{\infty }\)-BMO boundedness of some pseudo-differential operators. J. Pseudo-Differ. Oper. Appl. 14, 33 (2023). https://doi.org/10.1007/s11868-023-00528-4

    Article  MathSciNet  MATH  Google Scholar 

  14. Stein E.M.: Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, With the assistance of Timothy S. Murphy. In: Princeton Mathematical Series, 43. Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ (1993)

  15. Stefanov, A.: Pseudodifferential operators with rough symbols. J. Fourier Anal. Appl. 16(1), 97–128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Taylor, M.E.: Pseudodifferential Operators and Nonlinear PDE, Progress in Mathematics, 100. Birkhäuser Boston Inc, Boston (1991)

    Book  Google Scholar 

Download references

Acknowledgements

We are very grateful to reviewers for valuable suggestions. Xiaomei Wu (the corresponding author) was supported by the National Natural Science Foundation of China, Grant number 11871436.

Author information

Authors and Affiliations

Authors

Contributions

LQ and XW discussed and worked on this project together and wrote this paper together.

Corresponding author

Correspondence to Xiaomei Wu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qian, L., Wu, X. \(H^1\)\(L^1\) Boundedness of Pseudo-differential Operators with Forbidden Amplitudes. Mediterr. J. Math. 20, 257 (2023). https://doi.org/10.1007/s00009-023-02462-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02462-7

Keywords

Mathematics Subject Classification

Navigation