Skip to main content
Log in

The Fučík Spectrum for One Dimensional Kreĭn–Feller Operators

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this article we study the Fučík spectrum for one dimensional Kreĭn–Feller operators, also known as measure-geometric Laplacians. We show the existence of a sequence of continuous and monotonic curves, and hyperbolic curves restricting their location. As a by-product, we give a different characterization of the eigenvalues of Kreĭn–Feller operators using nonlinear variational tools, and we show that they coincide with the ones obtained with the linear theory for compact operators in Hilbert spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Materials

Not applicable, no data sets were used.

References

  1. Alif, M., Gossez, J.-P.: On the Fučík spectrum with indefinite weights. Differ. Integral Equ. 14, 1511–1530 (2001)

    MATH  Google Scholar 

  2. Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  3. Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.: Asymmetric elliptic problems with indefinite weights. Ann. Inst. H. Poincaré C Anal. Non Linéaire 19, 581–616 (2002)

    MathSciNet  MATH  Google Scholar 

  4. Arzt, P.: Measure theoretic trigonometric functions. J. Fractal Geom. 2(2), 115–169 (2015)

    MathSciNet  MATH  Google Scholar 

  5. Bahrouni, S., Ounaies, H., Salort, A.: Variational eigenvalues of the fractional g-Laplacian. In: Complex Variables and Elliptic Equations, pp. 1–24 (2022)

  6. Bird, J., Ngai, S., Teplyaev, A.: Fractal Laplacians on the unit interval. Annales des Sciences Mathematiques du Quebec 27, 135–168 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Bochicchio, I., Giorgi, C., Vuk, E.: Steady states and nonlinear buckling of cable-suspended beam systems. Meccanica 53, 3365–81 (2018)

    MathSciNet  Google Scholar 

  8. Chen, J., Ngai, S.-M.: Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps. J. Math. Anal. Appl. 364, 222–241 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Cuesta, M.: On the Fučík spectrum of the Laplacian and the \(p\)-Laplacian. In: 2000 Seminar in Differential Equations, pp. 67–96, Czech Republic, Kvilda (2000)

  10. Cuesta, M., De Figueiredo, D., Gossez, J.-P.: The beginning of the Fučík spectrum for the p-Laplacian. J. Differ. Equ. 159, 212–238 (1999)

    MATH  Google Scholar 

  11. Dancer, N.: On the Dirichlet problem for weakly nonlinear elliptic partial differential equation. Proc. R. Soc. Edinb. 76, 283–300 (1977)

    MATH  Google Scholar 

  12. de Figueiredo, D.G., Gossez, J.-P.: On the first curve of the Fučík spectrum of an elliptic operator. Differ. Integral Equ. 7, 1285–1302 (1994)

    MATH  Google Scholar 

  13. Deng, D.-W., Ngai, S.-M.: Eigenvalue estimates for Laplacians on measure spaces. J. Funct. Anal. 268, 2231–2260 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Drábek, P., Holubová, G., Matas, A., Nečesal, P.: Nonlinear models of suspension bridges: discussion of the results. Appl. Math. 48, 497–514 (2003)

    MathSciNet  MATH  Google Scholar 

  15. Drábek, P., Robinson, S.B.: An extended variational characterization of the Fučík Spectrum for the p-Laplace operator. Calc. Var. Partial. Differ. Equ. 59(2), 1–25 (2020)

    MATH  Google Scholar 

  16. Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)

    MATH  Google Scholar 

  17. Falconer, K.J., Hu, J.: Non-linear elliptical equations on the Sierpiński gasket. J. Math. Anal. Appl. 240(2), 552–573 (1999)

    MathSciNet  MATH  Google Scholar 

  18. Feller, W.: The general diffusion operator and positivity preserving semi-groups in one dimension. Ann. Math. 60, 417–436 (1954)

    MathSciNet  MATH  Google Scholar 

  19. Fernandez Bonder, J., Pinasco, J.P., Salort, A.M.: Homogenization of Fučík eigencurves. Mediterr. J. Math. 14(2), 1–12 (2017)

    MATH  Google Scholar 

  20. Freiberg, U.: Analytical properties of measure-geometric Kreĭn–Feller-operators on the real line. Math. Nachr. 260, 34–47 (2003)

    MathSciNet  MATH  Google Scholar 

  21. Freiberg, U.: Dirichlet forms on fractal subsets of the real line. Real Anal. Exchange 30, 589-604 (2004/2005)

  22. Freiberg, U., Löbus, J.-U.: Zeros of eigenfunctions of a class of generalized second order differential operators on the Cantor set. Math. Nachr. 265, 3–14 (2004)

    MathSciNet  MATH  Google Scholar 

  23. Freiberg, U., Zähle, M.: Harmonic calculus on fractals—a measure geometric approach I. Potential Anal. 16(3), 265–277 (2002)

    MathSciNet  MATH  Google Scholar 

  24. Fučík, S.: Boundary value problems with jumping nonlinearities. Časopis pro Pestovńí Matematiky 101(1), 69–87 (1976)

    MathSciNet  MATH  Google Scholar 

  25. Galewski, M.: On the mountain pass solutions to boundary value problems on the Sierpiński gasket. RM 74(4), 1–13 (2019)

    MATH  Google Scholar 

  26. Kac, I.S., Kreĭn, M.G.: On the spectral functions of the string. Am. Math. Soc. Transl. 103(1), 195–102 (1974)

    MATH  Google Scholar 

  27. Kesseböhmer, M., Niemann, A.: Spectral dimensions of Kreĭn–Feller operators and Lq-spectra. Adv. Math. 399, 108253–53 (2022)

    MATH  Google Scholar 

  28. Kesseböhmer, M., Samuel, T., Weyer, H.: Measure-geometric Laplacians for discrete distributions. Horizons Fractal Geom. Complex Dimens. Contemp. Math. 731, 133–142 (2019)

    MathSciNet  MATH  Google Scholar 

  29. Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)

    MATH  Google Scholar 

  30. Kreĭn, M.G.: On a generalization of investigations of Stieltjes. Dokl. Akad. Nauk SSSR 87, 881–884 (1952)

    MathSciNet  MATH  Google Scholar 

  31. Lazer, A.C., McKenna, P.J.: Large scale oscillatory behaviour in loaded asymmetric systems. Annales de l’ Institut Henri Poincaré C, Analyse non linéaire 4(3), 243–274 (1987)

    MathSciNet  MATH  Google Scholar 

  32. Lazer, A.C., McKenna, P.J.: Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities. Trans. Am. Math. Soc. 315, 721–739 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Liu, Z., Luo, H., Zhang, Z.: Dancer-Fučík spectrum for fractional Schrödinger operators with a steep potential well on \({\mathbb{R}}^N\). Nonlinear Anal. 189, 111565 (2019)

    MathSciNet  MATH  Google Scholar 

  34. Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  35. Molica Bisci, G., Repovš, D., Servadei, R.: Nonlinear problems on the Sierpiński gasket. J. Math. Anal. Appl. 452(2), 883–895 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Molica Bisci, G., Rǎdulescu, V.: A characterization for elliptic problems on fractal sets. Proc. Am. Math. Soc. 143(7), 2959–2968 (2015)

    MathSciNet  MATH  Google Scholar 

  37. Nečesal, P., Sobotková, I.: Localization of Fučík curves for the second order discrete Dirichlet operator. Bull. Sci. Math. 171, 103014 (2021)

    MATH  Google Scholar 

  38. Ngai, S.M., Tang, W.: Eigenvalue asymptotics and Bohr’s formula for fractal Schrödinger operators. Pac. J. Math. 300(1), 83–119 (2019)

    MATH  Google Scholar 

  39. Ngai, S.M., Tang, W., Xie, Y.: Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities. Discrete Contin. Dyn. Syst. 38(4), 1849 (2018)

    MathSciNet  MATH  Google Scholar 

  40. Pinasco, J.P.: Lower bounds of Fučík eigenvalues of the weighted one dimensional p-Laplacian. Rendiconti dell’ Inst. Matem. dell’ Univ. di Trieste XXXVI, 49–64 (2004)

    MATH  Google Scholar 

  41. Pinasco, J.P., Salort, A.M.: Asymptotic behavior of the curves in the Fučík spectrum. Commun. Contemp. Math. 19, 1650039 (2017)

    MathSciNet  MATH  Google Scholar 

  42. Pinasco, J.P., Scarola, C.: Eigenvalue bounds and spectral asymptotics for fractal Laplacians. J. Fractal Geom. 6, 109–126 (2019)

    MathSciNet  MATH  Google Scholar 

  43. Pinasco, J. P., Scarola, C.: A nodal inverse problem for measure-geometric Laplacians. Commun. Nonlinear Sci. Numer. Simul. 94, Paper No. 105542 (2021)

  44. Priyadarshi, A., Sahu, A.: Boundary value problem involving the p-Laplacian on the Sierpiński gasket. Fractals 26(1), 1850007 (2018)

    MathSciNet  MATH  Google Scholar 

  45. Rabinowitz, P.: Variational methods for nonlinear eigenvalue problems. In: Prodi, G. (ed.) Eigenvalues of Non-linear Problems. C.I.M.E. Summer Schools, vol. 67. Springer, Berlin (2009)

    Google Scholar 

  46. Rossi, J.D., Salort, A.M., da Silva, J.V.: The \(\infty \)-Fučík spectrum. Ann. Acad. Sci. Fenn. Math. 43, 293–310 (2018)

    MathSciNet  MATH  Google Scholar 

  47. Sahu, A., Priyadarshi, A.: A system of p-Laplacian equations on the Sierpiński gasket. Mediterr. J. Math. 18(3), 1–26 (2021)

    MathSciNet  MATH  Google Scholar 

  48. Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998)

    MathSciNet  MATH  Google Scholar 

  49. Solomyak, M., Verbitsky, E.: On a spectral problem related to self-similar measures. Bull. Lond. Math. Soc. 27(3), 242–248 (1995)

    MathSciNet  MATH  Google Scholar 

  50. Strichartz, R.S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006)

    MATH  Google Scholar 

  51. Triebel, H.: Fractals and Spectra. Related to Fourier Analysis and Function Spaces. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel (2011)

    Google Scholar 

  52. Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston, Inc., Boston (1996)

    Google Scholar 

  53. Zähle, M.: Harmonic calculus on fractals—a measure geometric approach II. Trans. Am. Math. Soc. 357(9), 3407–3423 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Funding

This work was partially supported by grants PIP 11220200102851CO, CONICET, and UBACYT 20020170100445BA.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Juan Pablo Pinasco.

Ethics declarations

Ethical Approval

Not applicable: it is a theoretical work, no human, nor animals were involved.

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oviedo, M., Pinasco, J.P. & Scarola, C. The Fučík Spectrum for One Dimensional Kreĭn–Feller Operators. Mediterr. J. Math. 20, 133 (2023). https://doi.org/10.1007/s00009-023-02357-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-023-02357-7

Keywords

Mathematics Subject Classification

Navigation