Abstract
In this article we study the Fučík spectrum for one dimensional Kreĭn–Feller operators, also known as measure-geometric Laplacians. We show the existence of a sequence of continuous and monotonic curves, and hyperbolic curves restricting their location. As a by-product, we give a different characterization of the eigenvalues of Kreĭn–Feller operators using nonlinear variational tools, and we show that they coincide with the ones obtained with the linear theory for compact operators in Hilbert spaces.
Similar content being viewed by others
Availability of Data and Materials
Not applicable, no data sets were used.
References
Alif, M., Gossez, J.-P.: On the Fučík spectrum with indefinite weights. Differ. Integral Equ. 14, 1511–1530 (2001)
Ambrosetti, A., Prodi, G.: A Primer of Nonlinear Analysis. Cambridge Studies in Advanced Mathematics, vol. 34. Cambridge University Press, Cambridge (1993)
Arias, M., Campos, J., Cuesta, M., Gossez, J.-P.: Asymmetric elliptic problems with indefinite weights. Ann. Inst. H. Poincaré C Anal. Non Linéaire 19, 581–616 (2002)
Arzt, P.: Measure theoretic trigonometric functions. J. Fractal Geom. 2(2), 115–169 (2015)
Bahrouni, S., Ounaies, H., Salort, A.: Variational eigenvalues of the fractional g-Laplacian. In: Complex Variables and Elliptic Equations, pp. 1–24 (2022)
Bird, J., Ngai, S., Teplyaev, A.: Fractal Laplacians on the unit interval. Annales des Sciences Mathematiques du Quebec 27, 135–168 (2003)
Bochicchio, I., Giorgi, C., Vuk, E.: Steady states and nonlinear buckling of cable-suspended beam systems. Meccanica 53, 3365–81 (2018)
Chen, J., Ngai, S.-M.: Eigenvalues and eigenfunctions of one-dimensional fractal Laplacians defined by iterated function systems with overlaps. J. Math. Anal. Appl. 364, 222–241 (2010)
Cuesta, M.: On the Fučík spectrum of the Laplacian and the \(p\)-Laplacian. In: 2000 Seminar in Differential Equations, pp. 67–96, Czech Republic, Kvilda (2000)
Cuesta, M., De Figueiredo, D., Gossez, J.-P.: The beginning of the Fučík spectrum for the p-Laplacian. J. Differ. Equ. 159, 212–238 (1999)
Dancer, N.: On the Dirichlet problem for weakly nonlinear elliptic partial differential equation. Proc. R. Soc. Edinb. 76, 283–300 (1977)
de Figueiredo, D.G., Gossez, J.-P.: On the first curve of the Fučík spectrum of an elliptic operator. Differ. Integral Equ. 7, 1285–1302 (1994)
Deng, D.-W., Ngai, S.-M.: Eigenvalue estimates for Laplacians on measure spaces. J. Funct. Anal. 268, 2231–2260 (2015)
Drábek, P., Holubová, G., Matas, A., Nečesal, P.: Nonlinear models of suspension bridges: discussion of the results. Appl. Math. 48, 497–514 (2003)
Drábek, P., Robinson, S.B.: An extended variational characterization of the Fučík Spectrum for the p-Laplace operator. Calc. Var. Partial. Differ. Equ. 59(2), 1–25 (2020)
Falconer, K.: Fractal Geometry. Mathematical Foundations and Applications, 2nd edn. Wiley, Hoboken (2003)
Falconer, K.J., Hu, J.: Non-linear elliptical equations on the Sierpiński gasket. J. Math. Anal. Appl. 240(2), 552–573 (1999)
Feller, W.: The general diffusion operator and positivity preserving semi-groups in one dimension. Ann. Math. 60, 417–436 (1954)
Fernandez Bonder, J., Pinasco, J.P., Salort, A.M.: Homogenization of Fučík eigencurves. Mediterr. J. Math. 14(2), 1–12 (2017)
Freiberg, U.: Analytical properties of measure-geometric Kreĭn–Feller-operators on the real line. Math. Nachr. 260, 34–47 (2003)
Freiberg, U.: Dirichlet forms on fractal subsets of the real line. Real Anal. Exchange 30, 589-604 (2004/2005)
Freiberg, U., Löbus, J.-U.: Zeros of eigenfunctions of a class of generalized second order differential operators on the Cantor set. Math. Nachr. 265, 3–14 (2004)
Freiberg, U., Zähle, M.: Harmonic calculus on fractals—a measure geometric approach I. Potential Anal. 16(3), 265–277 (2002)
Fučík, S.: Boundary value problems with jumping nonlinearities. Časopis pro Pestovńí Matematiky 101(1), 69–87 (1976)
Galewski, M.: On the mountain pass solutions to boundary value problems on the Sierpiński gasket. RM 74(4), 1–13 (2019)
Kac, I.S., Kreĭn, M.G.: On the spectral functions of the string. Am. Math. Soc. Transl. 103(1), 195–102 (1974)
Kesseböhmer, M., Niemann, A.: Spectral dimensions of Kreĭn–Feller operators and Lq-spectra. Adv. Math. 399, 108253–53 (2022)
Kesseböhmer, M., Samuel, T., Weyer, H.: Measure-geometric Laplacians for discrete distributions. Horizons Fractal Geom. Complex Dimens. Contemp. Math. 731, 133–142 (2019)
Kigami, J.: Analysis on Fractals. Cambridge University Press, Cambridge (2001)
Kreĭn, M.G.: On a generalization of investigations of Stieltjes. Dokl. Akad. Nauk SSSR 87, 881–884 (1952)
Lazer, A.C., McKenna, P.J.: Large scale oscillatory behaviour in loaded asymmetric systems. Annales de l’ Institut Henri Poincaré C, Analyse non linéaire 4(3), 243–274 (1987)
Lazer, A.C., McKenna, P.J.: Existence, uniqueness, and stability of oscillations in differential equations with asymmetric nonlinearities. Trans. Am. Math. Soc. 315, 721–739 (1989)
Liu, Z., Luo, H., Zhang, Z.: Dancer-Fučík spectrum for fractional Schrödinger operators with a steep potential well on \({\mathbb{R}}^N\). Nonlinear Anal. 189, 111565 (2019)
Mattila, P.: Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, Cambridge (1995)
Molica Bisci, G., Repovš, D., Servadei, R.: Nonlinear problems on the Sierpiński gasket. J. Math. Anal. Appl. 452(2), 883–895 (2017)
Molica Bisci, G., Rǎdulescu, V.: A characterization for elliptic problems on fractal sets. Proc. Am. Math. Soc. 143(7), 2959–2968 (2015)
Nečesal, P., Sobotková, I.: Localization of Fučík curves for the second order discrete Dirichlet operator. Bull. Sci. Math. 171, 103014 (2021)
Ngai, S.M., Tang, W.: Eigenvalue asymptotics and Bohr’s formula for fractal Schrödinger operators. Pac. J. Math. 300(1), 83–119 (2019)
Ngai, S.M., Tang, W., Xie, Y.: Spectral asymptotics of one-dimensional fractal Laplacians in the absence of second-order identities. Discrete Contin. Dyn. Syst. 38(4), 1849 (2018)
Pinasco, J.P.: Lower bounds of Fučík eigenvalues of the weighted one dimensional p-Laplacian. Rendiconti dell’ Inst. Matem. dell’ Univ. di Trieste XXXVI, 49–64 (2004)
Pinasco, J.P., Salort, A.M.: Asymptotic behavior of the curves in the Fučík spectrum. Commun. Contemp. Math. 19, 1650039 (2017)
Pinasco, J.P., Scarola, C.: Eigenvalue bounds and spectral asymptotics for fractal Laplacians. J. Fractal Geom. 6, 109–126 (2019)
Pinasco, J. P., Scarola, C.: A nodal inverse problem for measure-geometric Laplacians. Commun. Nonlinear Sci. Numer. Simul. 94, Paper No. 105542 (2021)
Priyadarshi, A., Sahu, A.: Boundary value problem involving the p-Laplacian on the Sierpiński gasket. Fractals 26(1), 1850007 (2018)
Rabinowitz, P.: Variational methods for nonlinear eigenvalue problems. In: Prodi, G. (ed.) Eigenvalues of Non-linear Problems. C.I.M.E. Summer Schools, vol. 67. Springer, Berlin (2009)
Rossi, J.D., Salort, A.M., da Silva, J.V.: The \(\infty \)-Fučík spectrum. Ann. Acad. Sci. Fenn. Math. 43, 293–310 (2018)
Sahu, A., Priyadarshi, A.: A system of p-Laplacian equations on the Sierpiński gasket. Mediterr. J. Math. 18(3), 1–26 (2021)
Simon, B.: The classical moment problem as a self-adjoint finite difference operator. Adv. Math. 137, 82–203 (1998)
Solomyak, M., Verbitsky, E.: On a spectral problem related to self-similar measures. Bull. Lond. Math. Soc. 27(3), 242–248 (1995)
Strichartz, R.S.: Differential Equations on Fractals. A Tutorial. Princeton University Press, Princeton (2006)
Triebel, H.: Fractals and Spectra. Related to Fourier Analysis and Function Spaces. Modern Birkhäuser Classics. Birkhäuser Verlag, Basel (2011)
Willem, M.: Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, vol. 24. Birkhäuser Boston, Inc., Boston (1996)
Zähle, M.: Harmonic calculus on fractals—a measure geometric approach II. Trans. Am. Math. Soc. 357(9), 3407–3423 (2005)
Funding
This work was partially supported by grants PIP 11220200102851CO, CONICET, and UBACYT 20020170100445BA.
Author information
Authors and Affiliations
Contributions
All authors contributed to the work. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.
Corresponding author
Ethics declarations
Ethical Approval
Not applicable: it is a theoretical work, no human, nor animals were involved.
Conflict of interest
The authors have no conflict of interest to declare that are relevant to the content of this article.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Oviedo, M., Pinasco, J.P. & Scarola, C. The Fučík Spectrum for One Dimensional Kreĭn–Feller Operators. Mediterr. J. Math. 20, 133 (2023). https://doi.org/10.1007/s00009-023-02357-7
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-023-02357-7
