Skip to main content
Log in

Footprints of Geodesics in Persistent Homology

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Given a metric space X and a subspace \(A\subset X\), we prove that A can generate various algebraic elements in persistent homology of X. We call such elements (algebraic) footprints of A. Our results imply that footprints typically appear in dimensions above \(\dim (A)\). Higher dimensional persistent homology thus encodes lower dimensional geometric features of X. We pay special attention to a specific type of geodesics in a geodesic surface X called geodesic circles. We explain how they may generate non-trivial odd-dimensional and two-dimensional footprints. In particular, we can detect even some contractible geodesics using two- and three-dimensional persistent homology. This provides a link between persistent homology and the length spectrum in Riemannian geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Adamaszek, M., Adams, H.: The Vietoris-Rips complexes of a circle. Pac. J. Math. 290-1, 1–40 (2017)

  2. Adamaszek, M., Adams, H., Reddy, S.: On Vietoris-Rips complexes of ellipses. J. Topol. Anal. 11, 661–690 (2019)

  3. Adams, H., Chowdhury, S., Jaffe, A., Sibanda, B.: Vietoris-Rips complexes of regular polygons. arXiv:1807.10971

  4. Adams, H., Coldren, E., Willmot, S.: The persistent homology of cyclic graphs. arXiv:1812.03374

  5. Adams, H., Coskunuzer, B.: Geometric Approaches on Persistent Homology. arXiv:2103.06408

  6. Attali, D., Lieutier, A., Salinas, D.: Vietoris-Rips complexes also provide topologically correct reconstructions of sampled shapes. In: Proceedings of the 27th annual ACM symposium on Computational geometry, SoCG ’11, pp 491–500, New York, NY (2011)

  7. Bauer, U.: Ripser. https://github.com/Ripser/ripser (2006)

  8. Cencelj, M., Dydak, J., Vavpetič, A., Virk, Ž: A combinatorial approach to coarse geometry. Topol. Appl. 159, 646–658 (2012)

    Article  MathSciNet  Google Scholar 

  9. Chambers, E.W., de Silva, V., Erickson, J., Ghrist, R.: Rips complexes of planar point sets. Discr. Comput. Geom. 44(1), 75–90 (2010)

  10. Chambers, E.W., Letscher, D.: On the height of a homotopy. In: Proceedings of the 21st Canadian Conference on Computational Geometry, pp. 103–106 (2009)

  11. Chazal, F., Crawley-Boevey, W., de Silva, V.: The observable structure of persistence modules. Homol. Homotop. Appl. 18(2), 247–265 (2016)

    Article  MathSciNet  Google Scholar 

  12. Chazal, F., de Silva, V., Oudot, S.: Persistence stability for geometric complexes. Geom. Dedicat. 173, 193 (2014)

    Article  MathSciNet  Google Scholar 

  13. Čufar, M.: Računanje enodimenzionalne vztrajne homologije v geodezični metriki. Ms Thesis, University of Ljubljana (2020)

  14. Dranishnikov, A.: Anti-Čech approximation in coarse geometry. Preprint, Institut des Hautes Études Scientifiques, Bures-sur-Yvette, France (2002)

  15. Dydak, J., Segal, J.: Shape Theory. An Introduction. Springer, Berlin (1978)

    MATH  Google Scholar 

  16. Edelsbrunner, H., Wagner, H.: Topological data analysis with Bregman divergences. In: Proc. 33rd Ann. Sympos. Comput. Geom. 39:1–39:16 (2017)

  17. Frosini, P.: Metric homotopies. Atti del Seminario Matematico e Fisico dell’Università di Modena, XLVII, 271–292 (1999)

  18. Gasparovic, E., Gommel, M., Purvine, E., Sazdanovic, R., Wang, B., Wang, Y., Ziegelmeier, L.: A Complete Characterization of the \(1\)-Dimensional Intrinsic Čech Persistence Diagrams for Metric Graphs, In: Chambers E., Fasy B., Ziegelmeier L. (eds) Research in Computational Topology. Association for Women in Mathematics Series, vol 13. Springer, Cham

  19. Gornet, R., Mast, M.B.: The length spectrum of Riemannian two-step nilmanifolds. Annales scientifiques de l’École Normale Supérieure, Serie 4, Volume 33 no. 2, pp. 181–209 (2000)

  20. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  21. Hausmann, J.-C.: On the Vietoris-Rips complexes and a cohomology theory for metric spaces. Ann. Math. Stud. 138, 175–188 (1995)

    MathSciNet  MATH  Google Scholar 

  22. Hopf, H.: Über die Abbildungen der dreidimensionalen Sphäre auf die Kugelfläche. Math. Ann. 104, 637–665 (1931)

    Article  MathSciNet  Google Scholar 

  23. Lablée, O.: Spectral Theory in Riemannian Geometry. European Mathematical Society (2015)

  24. Latschev, J.: Rips complexes of metric spaces near a closed Riemannian manifold. Arch. Math. 77(6), 522–528 (2001)

    Article  MathSciNet  Google Scholar 

  25. Lim, S., Memoli, F., Okutan, O.B.: Vietoris-Rips Persistent Homology, Injective Metric Spaces, and The Filling Radius. arXiv:2001.07588

  26. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence from random samples. Discrete Comput. Geom. 39, 419–441 (2008)

    Article  MathSciNet  Google Scholar 

  27. Virk, Ž: 1-Dimensional intrinsic persistence of geodesic spaces. J. Topol. Anal. 12, 169–207 (2020)

    Article  MathSciNet  Google Scholar 

  28. Virk, Ž: Approximations of \(1\)-dimensional intrinsic persistence of geodesic spaces and their stability. Rev. Mat. Complutense 32, 195–213 (2019)

    Article  MathSciNet  Google Scholar 

  29. Virk, Ž: Rips complexes as nerves and a functorial Dowker–Nerve diagram. Mediterr. J. Math. 18, 58 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Žiga Virk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research was supported by Slovenian Research Agency under Grant No. N1-0114 and P1-0292. The author would like to thank the referee for a careful reading and useful comments.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Virk, Ž. Footprints of Geodesics in Persistent Homology. Mediterr. J. Math. 19, 160 (2022). https://doi.org/10.1007/s00009-022-02089-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02089-0

Keywords

Mathematics Subject Classification

Navigation