Skip to main content
Log in

Complex Powers of L-functions and Integers Without Small Prime Factors

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The Selberg type divisor problem (Selberg in J Indian Math Soc 18:83–87, 1954, Serre in A course in arithmetic, Springer, Berlin–Heidelberg, 1973), pertains to the study on the coefficients of the complex power of the zeta-function as has been exhibited in Banerjee et al. (Kyushu J Math 71:363–385). The original objective of Selberg was to apply the results to the problem related to the prime number theorem. However, the complex powers turn out to be of independent interest and have applications in studying the mean values of the zeta and other L-functions. We consider the zeta-function (á la Hecke) associated to the normalised cusp forms for the full modular group in the quest of continuing the research started in Laurinčikas and Steuding (Cent Eur Sci J Math 2:1–18, 2004) on the summatory function of the complex power in the form of the Dirichlet convolution of the coefficients of such zeta-functions. The convolution includes the one with the identity and we may cover the results in Laurinčikas and Steuding (Cent Eur Sci J Math 2:1–18, 2004). We treat the general case of the Selberg class zeta-functions and the modular form case is an example. It is interesting to note that one of the main roles is played by the integers without large and small prime factors which have been studied extensively. Our approach has a merit of attaining both, the result on the summatory function as well as a result entailing the classical result on distrobution of integers without small prime factors together.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alladi, K., Erdös, P.: On the asymptotic behavior of large prime factors of integers. Pac. J. Math. 82, 295–315 (1979)

    Article  MathSciNet  Google Scholar 

  2. Alladi, K.: Asymptotic estimates of sums involving the Möbius function. J. Number Theory 82, 86–98 (1982)

    Article  Google Scholar 

  3. Balasubramanian, R., Ramachandra, K.: On the number of integers \(n\) such that \(nd(n)\le x\). Acta Arith. 49, 313–322 (1988)

    Article  MathSciNet  Google Scholar 

  4. Balasubramanian, R., Kanemitsu, S., Ramachandra, K.: On ideal-function-like functions. J. Comput. Appl. Math. 160, 27–36 (2003)

    Article  MathSciNet  Google Scholar 

  5. Banerjee, D., Chakraborty, K., Kanemitsu, S., Magi, B.: Abel–Tauber process and asymptotic formulas. Kyushu J. Math. 71, 363–385

  6. Bombieri, E., Hejhal, D.A.: On the distribution of zeros of linear combinations of Euler products. Duke Math. J. 80, 821–862 (1995)

    Article  MathSciNet  Google Scholar 

  7. DeKoninck, J.-M., Hensley, D.: Sums taken over \(n\le x \) with prime factors \(\le y\) of \(z^{\Omega (n)}\), and their derivatives with respect to \(x\). J. Indian Math. Soc. 42, 353–365 (1978)

    MathSciNet  Google Scholar 

  8. Delange, H.: Sur des formules dues à Atle Selberg. Bull. Sci. Math. (2) 83, 101–111 (1959)

    MathSciNet  MATH  Google Scholar 

  9. Delange, H.: Sur des formules de Atle Selberg. Acta Arith. 19, 503–509 (1971)

    Article  MathSciNet  Google Scholar 

  10. Fouvry, E., Tenenbaum, G.: Répartition statistique des entiers sans grand factuer premier dans progressions arithmétiques. Proc. Lond. Math. Soc. (3) 72, 481–514 (1996)

    Article  Google Scholar 

  11. Friedlander, J.: On the number of ideals free from large prime divisors. J. Reine Angew. Math. 255, 1–7 (1972)

    MathSciNet  MATH  Google Scholar 

  12. Friedlander, J.: Integers free from large and small primes. Proc. Lond. Math. Soc. (3) 33, 565–576 (1976)

    Article  MathSciNet  Google Scholar 

  13. Granville, A.: Smooth Numbers: Computational Number Theory and Beyond, Algebraic Number theory, vol. 44, pp. 267–323. MSRI Publication (2008)

  14. Gillett, J.R.: On the largest prime divisors of ideals in fields of degree \(n\). Duke Math. J. 37, 589–600 (1970)

    Article  MathSciNet  Google Scholar 

  15. Hensley, D.: Convolution powers of the Dickman function. J. Lond. Math. Soc. (2) 33, 395–406 (1966)

    MathSciNet  MATH  Google Scholar 

  16. Hilderbrand, A., Tenenbaum, G.: Integers without large prime factors. Journal de Théorie de Bordeaux 5(2), 411–484 (1993)

    MathSciNet  MATH  Google Scholar 

  17. Iwaniec, H., Kowalski, E.: Analytic Number Theory. Amer. Math. Soc., Providence (2004)

    MATH  Google Scholar 

  18. Laurinčikas, A., Steuding, I.: On zeta-functions associated to certain cusp forms. Cent. Eur. Sci. J. Math. 2, 1–18 (2004)

    Article  MathSciNet  Google Scholar 

  19. Levin, B.V., Fainleib, A.S.: On one method of summing of multiplicative functions. Izv. Akad. Nauk SSSR Ser. Mat. 31, 697–710 (1967)

    MathSciNet  MATH  Google Scholar 

  20. Levin, B.V., Fainleib, A.S.: Application of certain integral equations to problems of number theory. Uspehi Mat. Nauk. 22(3), 119–197 (1967)

    MathSciNet  MATH  Google Scholar 

  21. Nagoshi, H.: Value-distribution of Rankin–Selberg \(L\)-functions. In: Steuding, R., Steuding, J. (eds.) New Directions in Value Distribution Theory of Zeta and \(L\)-functions, pp. 205–287. Shaler Verlag, Aachen (2009)

    Google Scholar 

  22. Nakaya, H.: The generalized division problem and the Riemann hypothesis. Nagoya Math. J. 122, 149–159 (1991)

    Article  MathSciNet  Google Scholar 

  23. Nowak, W.-G.: On the average number of finite abelian groups of a given order. Ann. Sci. Math. Québec 15, 193–202 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Nowak, W.-G.: Sums of reciprocals of general divisor functions and the Selberg division problem. Abh. Math. Sem. Univ. Hamburg 61, 163–173 (1991)

    Article  MathSciNet  Google Scholar 

  25. Ogg, A.: Modular Forms and Dirichlet Series. W. A. Benjamin, New York–Amsterdam (1969)

    MATH  Google Scholar 

  26. Rieger, G.J.: Zum Teilerprblem von Atle Selberg. Math. Nachr. 30, 181–192 (1965)

    Article  MathSciNet  Google Scholar 

  27. Scourfield, E.J.: On some sums involving the largest prime factors of \(n\). Acta Arith. 59, 339–363 (1991)

    Article  MathSciNet  Google Scholar 

  28. Selberg, A.: A note on the paper of L. G. Sathe. J. Indian Math. Soc. 18, 83–87 (1954)

    MathSciNet  MATH  Google Scholar 

  29. Selberg, A.: Collected Papers, vol. I, pp. 418–422. Springer, Berlin–Heidelberg (1989)

    MATH  Google Scholar 

  30. Serre, J.-P.: A Course in Arithmetic. Springer, Heidelberg etc. (1973)

    Book  Google Scholar 

  31. Suetuna, Z.: Über die Anzahl der Idealtheiler. J. Fac. Sci. Imp. Univ. Tokyo 2, 155–177 (1931). (Z. Suetuna, Collected Papers, Vol III, Nansosha, Tokyo, 1989, 253–275)

    MATH  Google Scholar 

  32. Tenenbaum, G.: Facteurs premiers de sommes d’entiers. Proc. Am. Math. Soc. 106, 287–296 (1989)

    MathSciNet  MATH  Google Scholar 

  33. Tennenbaum, G.: Introduction to Analytic and Probabilistic Number Theory. Cambridge UP, Cambridge (1995). (translation from the French)

Download references

Acknowledgements

The authors would like to thank the referee for his/her careful checking of the MS and many enlightening suggestions, which improved the presentation and visibility of the paper. The earlier part of the paper was completed while the second author was staying with Professor \(\mathrm{H}^2\) Chans’. He is deeply indebted to the hospitality of the whole family and the consoling scenery through the window. Without occasional cessation of the work by throwing a glance at the jungle, the work could not have been done with this much comfort.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Chakraborty.

Additional information

To Professor Ramachandran Balasubramanian on the occasion of his 70th birthday, with friendship and respect.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, K., Kanemitsu, S. & Laurinčikas, A. Complex Powers of L-functions and Integers Without Small Prime Factors. Mediterr. J. Math. 19, 167 (2022). https://doi.org/10.1007/s00009-022-02037-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-022-02037-y

Keywords

Mathematics Subject Classification

Navigation