Skip to main content
Log in

Quantitative Uncertainty Principles Associated with the k-Generalized Stockwell Transform

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we introduce the k-generalized Stockwell transform on \({\mathbb {R}}\). We investigate for this transform the main theorems of Harmonic analysis as Plancherel’s, Calderón’s, and inversion formulas. Next, we prove several uncertainty principles for this transform such as Heisenberg’s type inequalities, Shannon’s uncertainty principle, Benedick–Amrein–Berthier’s uncertainty principle, and local uncertainty principles. Finally, after reviewing the k-generalized weighted inequalities, we connect these inequalities to show a generalization of uncertainty principles for the k-generalized Stockwell transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahri, M., Shah, F.A., Tantary, A.Y.: Uncertainty principles for the continuous Shearlet transforms. Integr. Transf. Spec. Funct. 31(7), 538–555 (2020)

    MATH  Google Scholar 

  2. Bansal, A., Kumar, A.: Heisenberg uncertainty inequality for Gabor transform. J. Math. Inequal. 10(3), 737–749 (2016)

    MathSciNet  MATH  Google Scholar 

  3. Bansal, A., Kumar, A.: Qualitative uncertainty principle for Gabor transform. Bull. Korean Math. Soc. 54(1), 71–84 (2017)

    MathSciNet  MATH  Google Scholar 

  4. Ben Saïd, S., Kobayashi, T., Ørsted, B.: Laguerre semigroup and Dunkl operators. Compos. Math. 148(4), 1265–1336 (2012)

    MathSciNet  MATH  Google Scholar 

  5. Ben Saïd, S.: A product formula and a convolution structure for a \(k\)-Hankel transform on \(\mathbb{R}\). J. Math. Anal. Appl. 463(2), 1132–1146 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Ben Salem, N., Nasr, A.R.: Heisenberg-type inequalities for the Weinstein operator. Integr. Transf. Spec. Funct. 26(9), 700–718 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Ben Salem, N., Nasr, A.R.: Shapiro type inequalities for the Weinstein and the Weinstein Gabor transforms. Konuralp J. Math. 5(1), 68–76 (2017)

    MathSciNet  MATH  Google Scholar 

  8. Benedicks, M.: On Fourier transforms of functions supported on sets of finite Lebesgue measure. J. Math. Anal. Appl. 106, 180–183 (1985)

    MathSciNet  MATH  Google Scholar 

  9. Bouzeffour, F., Ghazouani, S.: Heisenberg uncertainty principle for a fractional power of the Dunkl transform on the real line. J. Comput. Appl. Math. 294, 151–176 (2016)

    MathSciNet  MATH  Google Scholar 

  10. Cai, H.-P., He, Z.H., Huang, D.J.: Seismic data denoising based on mixed time-frequency methods. Appl. Geophys. 8, 319–327 (2011)

    Google Scholar 

  11. Catana, V.: Schatten-von Neumann norm inequalities for two-wavelet localization operators associated with \(\beta \)-Stockwell transforms. Appl. Anal. 91, 503–515 (2012)

    MathSciNet  MATH  Google Scholar 

  12. Ciatti, P., Ricci, F., Sundari, M.: Heisenberg–Pauli–Weyl uncertainty inequalities and polynomial volume growth. Adv. Math. 215, 616–625 (2007)

    MathSciNet  MATH  Google Scholar 

  13. Cohen, L.: Generalized phase-space distribution functions. J. Math. Phys. 7, 781–786 (1966)

    MathSciNet  Google Scholar 

  14. Cohen, L.: Time-frequency distributions—a review. Proc. IEEE 77, 941–981 (1989)

    Google Scholar 

  15. Constales, D., De Bie, H., Lian, P.: Explicit formulas for the Dunkl dihedral kernel and the \((\kappa, a)\)-generalized Fourier kernel. J. Math. Anal. Appl. 460(2), 900–926 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Czaja, W., Gigante, G.: Continuous Gabor transform for strong hypergroups. J. Fourier Anal. Appl. 9, 321–339 (2003)

    MathSciNet  MATH  Google Scholar 

  17. De Bie, H., Ørsted, B., Somberg, P., Souček, V.: Dunkl operators and a family of realizations of osp(1|2). Trans. Am. Math. Soc. 364, 3875–3902 (2012)

    MathSciNet  MATH  Google Scholar 

  18. Debnath, L.: Wavelet Transforms and Their Applications. Birkhäuser, Boston (2002)

    MATH  Google Scholar 

  19. Djurovic, I., Sejdic, E., Jiang, J.: Frequency-based window width optimization for \(S-\)transform. AEU Int. J. Electron. Commun. 62, 245–250 (2008)

    MATH  Google Scholar 

  20. Donoho, D.L., Stark, P.B.: Uncertainty principles and signal recovery. SIAM J. Appl. Math. 49, 906–931 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Du, J., Wong, M.W., Zhu, H.: Continuous and discrete inversion formulas for the Stockwell transform. Integr. Transf. Spec. Funct. 18, 537–543 (2007)

    MathSciNet  MATH  Google Scholar 

  22. Dunkl, C.F.: Differential-difference operators associated to reflection groups. Trans. Am. Math. Soc. 311, 167–183 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Dunkl, C.F.: Hankel transforms associated to finite reflection groups. In: Proceedings of the special session on hypergeometric functions on domains of positivity, Jack polynomials and applications. (Tampa, FL, 1991), Contemp. Math., 138: 123–138 (1992)

  24. Faris, W.G.: Inequalities and uncertainty inequalities. Math. Phys. 19, 461–466 (1978)

    Google Scholar 

  25. Fernandez, C., Galbis, A.: Annihilating sets for the short time Fourier transform. Adv. Math. 224(5), 1904–1926 (2010)

    MathSciNet  MATH  Google Scholar 

  26. Fernandez, C., Galbis, A., Martinez, J.: Localization operators and an uncertainty principle for the discrete short time Fourier transform. Abstr. Appl. Anal., Art. ID 131459, 6 pp (2014)

  27. Folland, G.B., Sitaram, A.: The uncertainty principle: a mathematical survey. J. Fourier Anal. Appl. 3, 207–238 (1997)

    MathSciNet  MATH  Google Scholar 

  28. Gabor, D.: Theory of communication. part 1: The analysis of information. J. Inst. Elect. Eng. Part III Radio Commun. Eng. 93(26): 429–441 (1946)

  29. Ghobber, S., Jaming, P.: Uncertainty principles for integral operators. Stud. Math. 220, 197–220 (2014)

    MathSciNet  MATH  Google Scholar 

  30. Gorbachev, D., Ivanov, V., Tikhonov, S.: Pitt’s inequalities and uncertainty principle for \(k\)-generalized Fourier transform. Int. Math. Res. Not. 23, 7179–7200 (2016)

    MathSciNet  MATH  Google Scholar 

  31. Gröchenig, K.: Aspects of Gabor analysis on locally compact abelian groups. Gabor analysis and algorithms, 211–231, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston (1998)

  32. Gröchenig, K.: Foundations of Time-frequency Analysis. Applied and Numerical Harmonic Analysis, Birkhäuser Inc, Boston (2001)

    MATH  Google Scholar 

  33. Havin, V., Jöricke, B.: The Uncertainty Principle in Harmonic Analysis, vol. 24. Springer, Berlin (1994)

    MATH  Google Scholar 

  34. Howe, R.: The oscillator semigroup. The mathematical heritage of Hermann Weyl (Durham, NC, 1987), 61-132, Proc. Sympos. Pure Math., 48, Am. Math. Soc., Providence, RI (1988)

  35. Johansen, T.R.: Weighted inequalities and uncertainty principles for the \((k, a)\)-generalized Fourier transform. Int. J. Math. 27(3), 1650019 (2016)

    MathSciNet  MATH  Google Scholar 

  36. Kawazoe, T., Mejjaoli, H.: Uncertainty principles for the Dunkl transform. Hiroshima Math. J. 40(2), 241–268 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Kobayashi, T., Mano, G.: The inversion formula an holomorphic extension of the minimal representation of the conformal group, harmonic analysis, group representations, automorphic forms and invariant theory: In honor of Roger Howe. Word Sci. 2007, 159–223 (2007)

  38. Kobayashi, T., Mano, G.: The Schrödinger model for the minimal representation of the indefinite orthogonal group \(O(p,q)\). vi + 132pp. the Mem. Am. Math. Soc. 212(1000) (2011)

  39. Ma, R.: Heisenberg inequalities for Jacobi transforms. J. Math. Anal. Appl. 332(1), 155–163 (2007)

    MathSciNet  MATH  Google Scholar 

  40. Mejjaoli, H.: Time-frequency analysis associated with the deformed Stockwell transform. J. Pseudo-Dier. Oper. Appl. 13, 22 (2022). https://doi.org/10.1007/s11868-022-00449-8

    Article  MathSciNet  MATH  Google Scholar 

  41. Mejjaoli, H.: Dunkl–Stockwell transform and its applications to the time-frequency analysis. J. Pseudo-Differ. Oper. Appl. https://doi.org/10.1007/s11868-021-00378-y

  42. Mejjaoli, H.: Uncertainty principles for the generalized Fourier transform associated to a Dunkl-type operator. Appl. Anal. 95(9), 1930–1956 (2017)

    MathSciNet  MATH  Google Scholar 

  43. Mejjaoli, H.: Harmonic analysis associated with the generalized differential-difference operator on the real line and quantitative uncertainty principles for its Hartley transform. Appl. Anal. 96(7), 1146–1169 (2017)

    MathSciNet  MATH  Google Scholar 

  44. Mejjaoli, H.: Wavelet-multipliers analysis in the framework of the \(k\)-Laguerre theory. Linear Multilinear Algebra 67(1), 1–24 (2017)

    MathSciNet  Google Scholar 

  45. Mejjaoli, H.: Spectral theorems associated with the \((k, a)\)-generalized wavelet multipliers. J. Pseudo-Differ. Oper. Appl. 9, 735–762 (2018)

    MathSciNet  MATH  Google Scholar 

  46. Mejjaoli, H.: \((k, a)\)-generalized wavelet transform and applications. J. Pseudo-Differ. Oper. Appl. 11, 55–92 (2020)

    MathSciNet  MATH  Google Scholar 

  47. Mejjaoli, H., Sraieb, N.: Uncertainty principles for the continuous Dunkl wavelet transform and the Dunkl continuous Gabor transform. Mediterr. J. Math. 5, 443–466 (2008)

    MathSciNet  MATH  Google Scholar 

  48. Mejjaoli, H., Sraieb, N.: Gabor transform in quantum calculus and applications. Fract. Calc. Appl. Anal. 12(3), 319–336 (2009)

    MathSciNet  MATH  Google Scholar 

  49. Mejjaoli, H., Trimèche, K.: \(k\)-Hankel two-wavelet theory and localization operators. Integr. Transf. Spec. Funct. 31(8), 620–644 (2020)

    MathSciNet  MATH  Google Scholar 

  50. Mejjaoli, H., Sraieb, N., Trimèche, K.: \(L^{p}\) local uncertainty principles for the Dunkl Gabor transform on \({\mathbb{R}}^{d}\). Boletín de la Sociedad Matemática Mexicana 26, 1163–1182 (2020)

    MathSciNet  MATH  Google Scholar 

  51. Price, J.F.: Inequalities and local uncertainty principles. Math. Phys. 24, 1711–1714 (1978)

    MathSciNet  MATH  Google Scholar 

  52. Price, J.F.: Sharp local uncertainty principles. Stud. Math. 85, 37–45 (1987)

    MATH  Google Scholar 

  53. Price, J.F., Sitaram, A.: Local uncertainty inequalities for locally compact groups. Trans. Am. Math. Soc. 308, 105–114 (1988)

    MathSciNet  MATH  Google Scholar 

  54. Riba, L., Wong, M.W.: Continuous inversion formulas for multi-dimensional modified Stockwell transforms. Integr. Transf. Spec. Funct. 26(1), 9–19 (2015)

    MathSciNet  MATH  Google Scholar 

  55. Rösler, M.: Convolution algebras which are not necessarily positivity-preserving, Applications of hypergroups and related measure algebras (Seattle, WA, 1993), 299–318, Contemp. Math., 183, Am. Math. Soc., Providence, RI (1995)

  56. Rösler, M.: Positivity of Dunkl’s intertwining operator. Duke Math. J. 98, 445–463 (1999)

    MathSciNet  MATH  Google Scholar 

  57. Ross, K.A.: Hypergroups and signed hypergroups. In: Harmonic Analysis and Hypergroups. Delhi, 1995. Trends Math. 77–91 (1998)

  58. Shah, F.A., Tantary, A.Y.: Non-isotropic angular Stockwell transform and the associated uncertainty principles. Appl. Anal. 100(24), 835–859 (2021)

    MathSciNet  MATH  Google Scholar 

  59. Shannon, C.E.: A mathematical theory of communication. ACM Sigmobile Mob. Comput. Commun. Rev. 5(1), 3–55 (2001)

    MathSciNet  Google Scholar 

  60. Slepian, D.: Prolate spheroidal wave functions, Fourier analysis and uncertainty IV: Extensions to many dimensions, \(k\)-generalized prolate spheroidal functions. Bell Syst. Tech. J. 43, 3009–3057 (1964)

    MathSciNet  MATH  Google Scholar 

  61. Slepian, D.: Some comments on Fourier analysis, uncertainty and modeling. SIAM Rev. 25(3), 379–393 (1983)

    MathSciNet  MATH  Google Scholar 

  62. Slepian, D., Pollak, H.O.: Prolate spheroidal wave functions, Fourier analysis and uncertainty I. Bell Syst. Tech. J. 40, 43–63 (1961)

    MathSciNet  MATH  Google Scholar 

  63. Stockwell, R.G., Mansinha, L., Lowe, R.P.: Localization of the complex spectrum: the \(S\) transform. IEEE Trans. Signal Process. 44, 998–1001 (1996)

    Google Scholar 

  64. Trimèche, K.: Generalized Wavelets and Hypergroups. Gordon and Breach Science Publishers (1997)

  65. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous Gabor transform. Doc. Math. J. DMV (Electron.) 5, 201–226 (2000)

    MathSciNet  MATH  Google Scholar 

  66. Yakubovich, S.B.: Uncertainty principles for the Kontorovich–Lebedev transform. Math. Model. Anal. 13(2), 289–302 (2008)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors are deeply indebted to the referees for providing constructive comments and helps in improving the contents of this article. The first author would like to thank professor MW. Wong for his help.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khalifa Trimèche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mejjaoli, H., Trimèche, K. Quantitative Uncertainty Principles Associated with the k-Generalized Stockwell Transform. Mediterr. J. Math. 19, 150 (2022). https://doi.org/10.1007/s00009-021-01968-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01968-2

Keywords

Mathematics Subject Classification

Navigation