Skip to main content
Log in

On the Capability of Hom-Lie Algebras

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

A Hom-Lie algebra \((L, \alpha _L)\) is said to be capable if there exists a Hom-Lie algebra \((H, \alpha _H)\) such that \(L \cong H/Z(H)\). We obtain a characterisation of capable Hom-Lie algebras involving its epicentre and we use this theory to further study the six-term exact sequence in homology and to obtain a Hopf-type formulae of the second homology of perfect Hom-Lie algebras.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Baer, R.: Groups with preassigned central and central quotient group. Trans. Am. Math. Soc. 44(3), 387–412 (1938)

    Article  MathSciNet  Google Scholar 

  2. Beyl, F.R., Felgner, U., Schmid, P.: On groups occurring as center factor groups. J. Algebra 61(1), 161–177 (1979)

    Article  MathSciNet  Google Scholar 

  3. Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-abelian Categories. Mathematics and Its Applications, vol. 566. Kluwer Academic Publishers, Dordrecht (2004)

    Book  Google Scholar 

  4. Borceux, F., Janelidze, G., Kelly, G.M.: Internal object actions. Comment. Math. Univ. Carol. 46(2), 235–255 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14, 244–286 (2005)

    MathSciNet  MATH  Google Scholar 

  6. Bourn, D.: Normal subobjects and abelian objects in protomodular categories. J. Algebra 228(1), 143–164 (2000)

    Article  MathSciNet  Google Scholar 

  7. Bourn, D., Janelidze, G.: Extensions with abelian kernels in protomodular categories. Georgian Math. J. 11(4), 645–654 (2004)

    Article  MathSciNet  Google Scholar 

  8. Casas, J.M., García-Martínez, X.: Abelian extensions and crossed modules of Hom–Lie algebras. J. Pure Appl. Algebra 224(3), 987–1008 (2020)

    Article  MathSciNet  Google Scholar 

  9. Casas, J.M., Insua, M.A., Pacheco, N.: On universal central extensions of Hom–Lie algebras. Hacet. J. Math. Stat. 44(2), 277–288 (2015)

    MathSciNet  MATH  Google Scholar 

  10. Casas, J.M., Khmaladze, E., Pacheco Rego, N.: A non-abelian tensor product of Hom–Lie algebras. Bull. Malays. Math. Sci. Soc. 40(3), 9144–163 (2017)

    Article  MathSciNet  Google Scholar 

  11. Casas, J.M., Khmaladze, E., Pacheco Rego, N.: On some properties preserved by the non-abelian tensor product of Hom-Lie algebras. Linear Multilinear Algebra 69(4), 607–626 (2021)

    Article  MathSciNet  Google Scholar 

  12. Casas, J.M., Van der Linden, T.: Universal central extensions in semi-abelian categories. Appl. Categ. Struct. 22(1), 253–268 (2014)

    Article  MathSciNet  Google Scholar 

  13. Cigoli, A.S., Gray, J.R.A., Van der Linden, T.: Algebraically coherent categories. Theory Appl. Categ. 30(54), 1864–1905 (2015)

    MathSciNet  MATH  Google Scholar 

  14. Cigoli, A.S., Gray, J.R.A., Van der Linden, T.: On the normality of Higgins commutators. J. Pure Appl. Algebra 219, 897–912 (2015)

    Article  MathSciNet  Google Scholar 

  15. Cigoli, A.S., Mantovani, S., Metere, G.: Peiffer product and Peiffer commutator for internal pre-crossed modules. Homol. Homotopy Appl. 19(1), 181–207 (2017)

    Article  MathSciNet  Google Scholar 

  16. Donadze, G., García-Martínez, X., Khmaladze, E.: A non-abelian exterior product and homology of Leibniz algebras. Rev. Mat. Complut. 31(1), 217–236 (2018)

    Article  MathSciNet  Google Scholar 

  17. Ellis, G.J.: Nonabelian exterior products of Lie algebras and an exact sequence in the homology of Lie algebras. J. Pure Appl. Algebra 46(2–3), 111–115 (1987)

    Article  MathSciNet  Google Scholar 

  18. Ellis, G.J.: A nonabelian tensor product of Lie algebras. Glasg. Math. J. 33(1), 101–120 (1991)

    Article  MathSciNet  Google Scholar 

  19. Ellis, G.J.: Tensor products and \(q\)-crossed modules. J. Lond. Math. Soc. (2) 51(2), 243–258 (1995)

    Article  MathSciNet  Google Scholar 

  20. Everaert, T., Van der Linden, T.: Baer invariants in semi-abelian categories. I. General theory. Theory Appl. Categ. 12(1), 1–33 (2004)

    MathSciNet  MATH  Google Scholar 

  21. García-Martínez, X., Tsishyn, M., Van der Linden, T., Vienne, C.: Algebras with representable representations. Proc. Edinb. Math. Soc., 64(3), 555–573 (2021)

  22. García-Martínez, X., Van der Linden, T.: A characterisation of Lie algebras amongst anti-commutative algebras. J. Pure Appl. Algebra 223(11), 4857–4870 (2019)

    Article  MathSciNet  Google Scholar 

  23. García-Martínez, X., Van der Linden, T.: A characterisation of Lie algebras via algebraic exponentiation. Adv. Math. 341, 92–117 (2019)

    Article  MathSciNet  Google Scholar 

  24. Goyvaerts, I., Vercruysse, J.: A Note on the Categorification of Lie Algebras, Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics and Statistics, vol. 36, pp. 541–550. Springer, Tokyo (2013)

    Book  Google Scholar 

  25. Gray, J.R.A.: Algebraic exponentiation in general categories. Ph.D. thesis, University of Cape Town (2010)

  26. Gray, J.R.A.: Representability of the split extension functor for categories of generalized Lie algebras. Cah. Topol. Géom. Différ. Catég. 51(3), 162–181 (2010)

    MathSciNet  MATH  Google Scholar 

  27. Hartwig, J.T., Larsson, D., Silvestrov, S.D.: Deformations of Lie algebras using -derivations. J. Algebra 295(2), 314–361 (2006)

    Article  MathSciNet  Google Scholar 

  28. Higgins, P.J.: Groups with multiple operators. Proc. Lond. Math. Soc. (3) 6, 366–416 (1956)

    Article  MathSciNet  Google Scholar 

  29. Hilton, P.J., Stammbach, U.: A Course in Homological Algebra. Graduate Texts in Mathematics, vol. 4, 2nd edn. Springer, New York (1997)

    Book  Google Scholar 

  30. Janelidze, G.: Internal crossed modules. Georgian Math. J. 10(1), 99–114 (2003)

    Article  MathSciNet  Google Scholar 

  31. Janelidze, G., Márki, L., Tholen, W.: Semi-abelian categories. J. Pure Appl. Algebra 168,(2–3), 367–386 (2002) [Category theory 1999 (Coimbra)]

  32. Jin, Q., Li, X.: Hom–Lie algebra structures on semi-simple Lie algebras. J. Algebra 319(4), 1398–1408 (2008)

    Article  MathSciNet  Google Scholar 

  33. Khmaladze, E., Kurdiani, R., Ladra, M.: On the capability of Leibniz algebras. Georgian Math. J. 28(2), 271–279 (2021)

  34. Makhlouf, A., Silvestrov, S.D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(2), 51–64 (2008)

    Article  MathSciNet  Google Scholar 

  35. Mantovani, S., Metere, G.: Internal crossed modules and Peiffer condition. Theory Appl. Categ. 23(6), 113–135 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Martins-Ferreira, N., Van der Linden, T.: A note on the “Smith is Huq’’ condition. Appl. Categ. Struct. 20(2), 175–187 (2012)

    Article  MathSciNet  Google Scholar 

  37. Niroomand, P., Parvizi, M., Russo, F.G.: Some criteria for detecting capable Lie algebras. J. Algebra 384, 36–44 (2013)

    Article  MathSciNet  Google Scholar 

  38. Salemkar, A.R., Alamian, V., Mohammadzadeh, H.: Some properties of the Schur multiplier and covers of Lie algebras. Commun. Algebra 36(2), 697–707 (2008)

    Article  MathSciNet  Google Scholar 

  39. Sheng, Y.: Representations of Hom–Lie algebras. Algebras Represent. Theory 15(6), 1081–1098 (2012)

    Article  MathSciNet  Google Scholar 

  40. Sheng, Y., Chen, D.: Hom–Lie 2-algebras. J. Algebra 376, 174–195 (2013)

    Article  MathSciNet  Google Scholar 

  41. Yau, D.: Enveloping algebras of Hom–Lie algebras. J. Gen. Lie Theory Appl. 2(2), 95–108 (2008)

    Article  MathSciNet  Google Scholar 

  42. Yau, D.: Hom-algebras and homology. J. Lie Theory 19(2), 409–421 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his helpful comments and suggestions that improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xabier García-Martínez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work was supported by Ministerio de Economía y Competitividad (Spain), with grant number PID2020-115155GB-I00. X. García-Martínez is a Postdoctoral Fellow of the Research Foundation–Flanders (FWO).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Casas, J.M., García-Martínez, X. On the Capability of Hom-Lie Algebras. Mediterr. J. Math. 19, 86 (2022). https://doi.org/10.1007/s00009-021-01937-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01937-9

Keywords

Mathematics Subject Classification

Navigation