Abstract
A Hom-Lie algebra \((L, \alpha _L)\) is said to be capable if there exists a Hom-Lie algebra \((H, \alpha _H)\) such that \(L \cong H/Z(H)\). We obtain a characterisation of capable Hom-Lie algebras involving its epicentre and we use this theory to further study the six-term exact sequence in homology and to obtain a Hopf-type formulae of the second homology of perfect Hom-Lie algebras.
Similar content being viewed by others
References
Baer, R.: Groups with preassigned central and central quotient group. Trans. Am. Math. Soc. 44(3), 387–412 (1938)
Beyl, F.R., Felgner, U., Schmid, P.: On groups occurring as center factor groups. J. Algebra 61(1), 161–177 (1979)
Borceux, F., Bourn, D.: Mal’cev, Protomodular, Homological and Semi-abelian Categories. Mathematics and Its Applications, vol. 566. Kluwer Academic Publishers, Dordrecht (2004)
Borceux, F., Janelidze, G., Kelly, G.M.: Internal object actions. Comment. Math. Univ. Carol. 46(2), 235–255 (2005)
Borceux, F., Janelidze, G., Kelly, G.M.: On the representability of actions in a semi-abelian category. Theory Appl. Categ. 14, 244–286 (2005)
Bourn, D.: Normal subobjects and abelian objects in protomodular categories. J. Algebra 228(1), 143–164 (2000)
Bourn, D., Janelidze, G.: Extensions with abelian kernels in protomodular categories. Georgian Math. J. 11(4), 645–654 (2004)
Casas, J.M., García-Martínez, X.: Abelian extensions and crossed modules of Hom–Lie algebras. J. Pure Appl. Algebra 224(3), 987–1008 (2020)
Casas, J.M., Insua, M.A., Pacheco, N.: On universal central extensions of Hom–Lie algebras. Hacet. J. Math. Stat. 44(2), 277–288 (2015)
Casas, J.M., Khmaladze, E., Pacheco Rego, N.: A non-abelian tensor product of Hom–Lie algebras. Bull. Malays. Math. Sci. Soc. 40(3), 9144–163 (2017)
Casas, J.M., Khmaladze, E., Pacheco Rego, N.: On some properties preserved by the non-abelian tensor product of Hom-Lie algebras. Linear Multilinear Algebra 69(4), 607–626 (2021)
Casas, J.M., Van der Linden, T.: Universal central extensions in semi-abelian categories. Appl. Categ. Struct. 22(1), 253–268 (2014)
Cigoli, A.S., Gray, J.R.A., Van der Linden, T.: Algebraically coherent categories. Theory Appl. Categ. 30(54), 1864–1905 (2015)
Cigoli, A.S., Gray, J.R.A., Van der Linden, T.: On the normality of Higgins commutators. J. Pure Appl. Algebra 219, 897–912 (2015)
Cigoli, A.S., Mantovani, S., Metere, G.: Peiffer product and Peiffer commutator for internal pre-crossed modules. Homol. Homotopy Appl. 19(1), 181–207 (2017)
Donadze, G., García-Martínez, X., Khmaladze, E.: A non-abelian exterior product and homology of Leibniz algebras. Rev. Mat. Complut. 31(1), 217–236 (2018)
Ellis, G.J.: Nonabelian exterior products of Lie algebras and an exact sequence in the homology of Lie algebras. J. Pure Appl. Algebra 46(2–3), 111–115 (1987)
Ellis, G.J.: A nonabelian tensor product of Lie algebras. Glasg. Math. J. 33(1), 101–120 (1991)
Ellis, G.J.: Tensor products and \(q\)-crossed modules. J. Lond. Math. Soc. (2) 51(2), 243–258 (1995)
Everaert, T., Van der Linden, T.: Baer invariants in semi-abelian categories. I. General theory. Theory Appl. Categ. 12(1), 1–33 (2004)
García-Martínez, X., Tsishyn, M., Van der Linden, T., Vienne, C.: Algebras with representable representations. Proc. Edinb. Math. Soc., 64(3), 555–573 (2021)
García-Martínez, X., Van der Linden, T.: A characterisation of Lie algebras amongst anti-commutative algebras. J. Pure Appl. Algebra 223(11), 4857–4870 (2019)
García-Martínez, X., Van der Linden, T.: A characterisation of Lie algebras via algebraic exponentiation. Adv. Math. 341, 92–117 (2019)
Goyvaerts, I., Vercruysse, J.: A Note on the Categorification of Lie Algebras, Lie Theory and Its Applications in Physics. Springer Proceedings in Mathematics and Statistics, vol. 36, pp. 541–550. Springer, Tokyo (2013)
Gray, J.R.A.: Algebraic exponentiation in general categories. Ph.D. thesis, University of Cape Town (2010)
Gray, J.R.A.: Representability of the split extension functor for categories of generalized Lie algebras. Cah. Topol. Géom. Différ. Catég. 51(3), 162–181 (2010)
Hartwig, J.T., Larsson, D., Silvestrov, S.D.: Deformations of Lie algebras using -derivations. J. Algebra 295(2), 314–361 (2006)
Higgins, P.J.: Groups with multiple operators. Proc. Lond. Math. Soc. (3) 6, 366–416 (1956)
Hilton, P.J., Stammbach, U.: A Course in Homological Algebra. Graduate Texts in Mathematics, vol. 4, 2nd edn. Springer, New York (1997)
Janelidze, G.: Internal crossed modules. Georgian Math. J. 10(1), 99–114 (2003)
Janelidze, G., Márki, L., Tholen, W.: Semi-abelian categories. J. Pure Appl. Algebra 168,(2–3), 367–386 (2002) [Category theory 1999 (Coimbra)]
Jin, Q., Li, X.: Hom–Lie algebra structures on semi-simple Lie algebras. J. Algebra 319(4), 1398–1408 (2008)
Khmaladze, E., Kurdiani, R., Ladra, M.: On the capability of Leibniz algebras. Georgian Math. J. 28(2), 271–279 (2021)
Makhlouf, A., Silvestrov, S.D.: Hom-algebra structures. J. Gen. Lie Theory Appl. 2(2), 51–64 (2008)
Mantovani, S., Metere, G.: Internal crossed modules and Peiffer condition. Theory Appl. Categ. 23(6), 113–135 (2010)
Martins-Ferreira, N., Van der Linden, T.: A note on the “Smith is Huq’’ condition. Appl. Categ. Struct. 20(2), 175–187 (2012)
Niroomand, P., Parvizi, M., Russo, F.G.: Some criteria for detecting capable Lie algebras. J. Algebra 384, 36–44 (2013)
Salemkar, A.R., Alamian, V., Mohammadzadeh, H.: Some properties of the Schur multiplier and covers of Lie algebras. Commun. Algebra 36(2), 697–707 (2008)
Sheng, Y.: Representations of Hom–Lie algebras. Algebras Represent. Theory 15(6), 1081–1098 (2012)
Sheng, Y., Chen, D.: Hom–Lie 2-algebras. J. Algebra 376, 174–195 (2013)
Yau, D.: Enveloping algebras of Hom–Lie algebras. J. Gen. Lie Theory Appl. 2(2), 95–108 (2008)
Yau, D.: Hom-algebras and homology. J. Lie Theory 19(2), 409–421 (2009)
Acknowledgements
The authors would like to thank the referee for his helpful comments and suggestions that improved the manuscript.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
This work was supported by Ministerio de Economía y Competitividad (Spain), with grant number PID2020-115155GB-I00. X. García-Martínez is a Postdoctoral Fellow of the Research Foundation–Flanders (FWO).
Rights and permissions
About this article
Cite this article
Casas, J.M., García-Martínez, X. On the Capability of Hom-Lie Algebras. Mediterr. J. Math. 19, 86 (2022). https://doi.org/10.1007/s00009-021-01937-9
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-021-01937-9