Skip to main content
Log in

A Fractional Bihari Inequality and Some Applications to Fractional Differential Equations and Stochastic Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to present a new version of the Bihari inequality with singular kernel and give a simple proof of the fractional Gronwall lemma. Our new ideas rest on the use of Young’s and Hölder’s inequalities to simplify the complex inequalities. Based on this new type of Bihari inequality we can relax many results of fractional differential equations and inclusions and stochastic differential equations. Also, the obtained inequalities can be used to analyze a specific class of fractional differential equations, both linear and nonlinear. Using the Caputo fractional derivative, the study of an initial valued problem for a fractional differential equation provides some topological proprieties for the solution set, and shows it is the intersection of a decreasing sequence of compact nonempty contractible spaces. We extend the classical Kneser’s theorem on the solution structure of the ordinary differential equation and relax some results about the fractional differential equation. Also, we establish existence results for Caputo fractional stochastic differential equations. Finally, we study the existence of solution for fractional differential inclusion in Banach lattice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas, S., Benchohra, M., Graef, J.R., Henderson, J.: In: Implicit Fractional Differential and Integral Equations. Existence and Stability. De Gruyter, Berlin (2018)

    Chapter  MATH  Google Scholar 

  2. Abdeljawad, T., Alzabut, J.: The $q$-fractional analogue for Gronwall-type inequality. J. Funct. Spaces Appl. 2013, Article ID 543839 (2013)

  3. Abdeljawad, T., Alzabut, J., Baleanu, D.: A generalized $q$-fractional Gronwall inequality and its applications to nonlinear delay $q$-fractional difference systems. J. Inequal. Appl. 240, 1–13 (2016)

    MathSciNet  MATH  Google Scholar 

  4. Agarwal, R.P., Deng, S., Zhang, W.: Generalization of a retarded Gronwall-like inequality and its applications. Appl. Math. Comput. 165, 599–612 (2005)

    MathSciNet  MATH  Google Scholar 

  5. Agarwal, R.P., Mahmoud, R.R., Saker, S.H., Tunç, C.: New generalizations of Németh–Mohapatra type inequalities on time scales. Acta Math. Hungar. 152, 383–403 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aliprantis, C.D., Border, K.C.: Infinite Dimensional Analysis. A Hitchhiker’s Guide, 3rd edn. Springer, Berlin (2006)

    MATH  Google Scholar 

  7. Andres, J., Górniewicz, L.: Topological Fixed Point Principles for Boundary Value Problems. Kluwer, Dordrecht (2003)

    Book  MATH  Google Scholar 

  8. Arnold, L.: Stochastic Differential Equations: Theory and Applications. New York (1974)

  9. Aubin, J.P., Frankowska, H.: Set Valued Analysis. Birkhauser, Boston (1990)

    MATH  Google Scholar 

  10. Boudaoui, A., Caraballo, T., Ouahab, A.: Existence of mild solutions to stochastic delay evolution equations with a fractional Brownian motion and impulses. Stoch. Anal. Appl. 33(2), 244–258 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bellman, R.: Stability Theory of Differential Equations. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  12. Benchohra, M., Heris, A.: Random impulsive partial hyperbolic fractional differential equations. Nonlinear Dyn. Syst. Theory 17, 327–339 (2017)

    MathSciNet  MATH  Google Scholar 

  13. Bihari, I.: A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations. Actu Math. Acad. Sci. Hungar. 7, 81–94 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  14. Browder, F.E., Gupta, G.P.: Topological degree and nonlinear mappings of analytic type in Banach spaces. J. Math. Anal. Appl. 26, 390–402 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  15. Chadha, A., Pandey, D.N.: Existence results for an impulsive neutral stochastic fractional integro-differential equation with infinite delay. Nonlinear Anal. 128, 149–175 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Chalco-Cano, Y., Nieto, J.J., Ouahab, A., Román-Flores, H.: Solution set for fractional differential equations with Riemann–Liouville derivative. Fract. Calc. Appl. Anal. 16(3), 682–694 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Cui, J., Yan, L.: Existence result for fractional neutral stochastic integro-differential equations with infinite delay. J. Phys. A 44(33), 335201 (2011)

    Article  MathSciNet  Google Scholar 

  18. Dannan, F.M.: Integral inequalities of Gronwall–Bellman–Bihari type and asymptotic behavior of certain second order nonlinear differential equations. J. Math. Anal. Appl. 108, 151–164 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  19. Diethelm, K.: The Analysis of Fractional Differential Equations. Springer, Braunschweig (2004)

    Google Scholar 

  20. Ding, X.L., Cao-Labora, D., Nieto, J.J.: A new generalized Gronwall inequality with a double singularity and its applications to fractional stochastic differential equations. Stoch. Anal. Appl. 37(6), 1042–1056 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  21. Djebali, S., Górniewicz, L., Ouahab, A.: Solutions Sets for Differential Equations and Inclusions, De Gruyter Series in Nonlinear Analysis and Applications, vol. 18. de Gruyter, Berlin (2013)

    Book  MATH  Google Scholar 

  22. Doan, T.S., Huong, P.T., Kloeden, P.E., Vu, A.M.: Euler–Maruyama scheme for Caputo stochastic fractional differential equations. J. Comput. Appl. Math. 380, 112989 (2020)

    Article  MathSciNet  MATH  Google Scholar 

  23. Dragoni, R., Macki, J.W., Nistri, P., Zecca, P.: Solution Sets of Differential Equations in Abstract Spaces, Pitman Research Notes in Mathematics Series, vol. 342. Longman, Harlow (1996)

  24. Ferreira, R.A.C.: A discrete fractional Gronwall inequality. Proc. Am. Math. Soc. 5, 1605–1612 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  25. Gaul, L., Klein, P., Kempfle, S.: Damping description involving fractional operators. Mech. Syst. Signal Process. 5, 81–88 (1991)

    Article  Google Scholar 

  26. Górniewicz, L.: Topological Fixed Point Theory of Multivalued Mappings. Springer, Berlin (2006)

    MATH  Google Scholar 

  27. Graef, J.R., Henderson, J., Ouahab, A.: Topological Methods for Differential Equations and Inclusions, Monographs and Research Notes in Mathematics Series Profile. CRC Press, Boca Raton (2019)

    MATH  Google Scholar 

  28. Granas, A., Dugundji, J.: Fixed Point Theory. Springer, New York (2003)

    Book  MATH  Google Scholar 

  29. Guendouz, C., Lazreg, J.E., Nieto, J.J., Ouahab, A.: Existence and compactness results for a system of fractional differential equations. J. Funct. Spaces, Art. ID 5735140 (2020)

  30. Han, X., Kloeden, P.E.: Random Ordinary Differential Equations and Their Numerical Solution. Springer, New York (2017)

    Book  MATH  Google Scholar 

  31. Henry, D.: Geometric Theory of Semilinear Parabolic Partial Differential Equations. Springer, Berlin (1989)

    Google Scholar 

  32. Hoa, L.H., Trong, N.N., Truong, L.X.: Topological structure of solution set for a class of fractional neutral evolution equations on the half-line. Topol. Methods Nonlinear Anal. 48(1), 235–255 (2016)

    MathSciNet  MATH  Google Scholar 

  33. Hu, Sh., Papageorgiou, N.S.: Handbook of Multi-valued Analysis, Volume I: Theory. Kluwer, Dordrecht (1997)

  34. Hu, Sh., Papageorgiou, N.S.: Handbook of Multi-valued Analysis. Volume II: Applications. Kluwer, Dordrecht (2000)

  35. Itoh, S.: Random fixed point theorems with an application to random differential equations in Banach spaces. J. Math. Anal. Appl. 67, 261–273 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  36. Jarad, F., Harikrishnan, S., Kamal, K.K.: Existence and stability results to a class of fractional random implicit differential equations involving a generalized Hilfer fractional derivative. Discrete Contin. Dyn. Syst. Ser. S 13, 723–739 (2020)

    MathSciNet  MATH  Google Scholar 

  37. Kamenskii, M., Obukhovskii, V., Zecca, P.: Condensing Multi-valued Maps and Semilinear Differential Inclusions in Banach Spaces. Walter de Gruyter & Co., Berlin (2001)

    Book  MATH  Google Scholar 

  38. Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, vol. 204. Elsevier Science B. V, Amsterdam (2006)

    Google Scholar 

  39. Kisielewicz, M.: Differential Inclusions and Optimal Control. Kluwer, Dordrecht (1991)

    MATH  Google Scholar 

  40. Lasry, J.M., Robert, R.: Analyse Non Linéaire Multivoque, Publ. In: Centre de Recherche de Mathématique de la Décision, vol. 7611. Université de Dauphine, Paris IX, CNRS (1976)

  41. Lupulescu, V., Ntouyas, S.K.: Random fractional differential equations. Int. Electron. J. Pure Appl. Math. 4, 119–136 (2012)

    MathSciNet  MATH  Google Scholar 

  42. Lupulescu, V., O’Regan, D., Rahman, G.: Existence results for random fractional differential equations. Opuscula Math. 34, 813–825 (2014)

  43. Malinowska, A.B., Torres, D.F.M.: Towards a combined fractional mechanics and quantization. Fract. Calc. Appl. Anal. 15, 407–417 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  44. Mekki, S., Niteo, J.J., Ouahab, A.: Stochastic version of Henry type Gronwall’s inequality, Infin. Dimens. Anal. Quantum Probab. Relat. Top. (to appear)

  45. Metzler, F., Schick, W., Kilian, H.G., Nonnenmacher, T.F.: Relaxation in filled polymers: a fractional calculus approach. J. Chem. Phys. 103, 7180–7186 (1995)

    Article  Google Scholar 

  46. Michta, M., Motyl, J.: Locally Lipschitz selections in Banach lattices. Nonlinear Anal. 71, 2335–2342 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  47. Michta, M., Motyl, J.: Convex selections of multifunctions and their applications. Optimization 55, 91–99 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  48. Motyl, J.: Carathéodory convex selections of set-valued functions in Banach lattices. Topol. Methods Nonlinear Anal. 43(1), 1–10 (2014)

    MathSciNet  MATH  Google Scholar 

  49. Motyl, J.: Stochastic retarded inclusion with Carathéodory-upper separated multifunctions. Set-Valued Var. Anal. 24, 191–205 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  50. Motyl, J.: Stochastic Itô inclusion with upper separated multifunctions. J. Math. Anal. Appl. 400, 505–509 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  51. Motyl, J.: Existence of solutions of functional stochastic inclusion. Dyn. Syst. Appl. 21, 331–338 (2012)

    MathSciNet  MATH  Google Scholar 

  52. Motyl, J.: Upper separated multifunctions in deterministic and stochastic optimal control. Appl. Math. Nonlinear Sci. 2, 479–484 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  53. Motyl, J.: Carathéodory convex selections of multifunctions and their applications. J. Nonlinear Convex Anal. 18(1), 535–551 (2017)

    MathSciNet  MATH  Google Scholar 

  54. Nasholm, S.P., Holm, S.: On a fractional Zener elastic wave equation. Fract. Calc. Appl. Anal. 16, 26–50 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  55. Øksendal, B.: Stochastic Differential Equations: An Introduction with Applications, 4th edn. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  56. Osgood, W.F.: Beweis der Existenz einer Lösung der Differentialgleichung $ rac{{dy}}{{dx}} = fleft( x, y ight)$ ohne Hinzunahme der Cauchy–Lipschitz’schen Bedingung (German). Monatsh. Math. Phys. 9(1), 331–345 (1898)

  57. Pachpatte, B.G.: On some nonlinear generalizations of Gronwall’s inequality. Proc. Indian Acad. Sci. Sect. A 84(1), 1–9 (1976)

  58. Pachpatte, B.G.: Inequalities for Differential and Integral Equations. Academic Press, New York (1998)

    MATH  Google Scholar 

  59. Pachpatte, B.G.: On some generalizations of Bellman’s lemma. J. Math. Anal. Appl. 5, 141–150 (1975)

  60. Pardoux, E., Rascanu, A.: Stochastic Differential Equations, Backward SDEs, Partial Differential Equations, Stochastic Modelling and Applied Probability, vol. 69. Springer, Cham (2014)

    Book  MATH  Google Scholar 

  61. Peressini, A.L.: Ordered Topological Vector Spaces. Harper & Row Publishers, New York (1967)

    MATH  Google Scholar 

  62. Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  63. Qin, Y.: Analytic Inequalities and Applications in PDEs, Operator Theory. Adv. PDE .Springer/Birkhäuser, Basel/Boston (2017)

  64. Qin, Y.: Integral and Discrete Inequalities and Their Applications. Springer International Publishing AG, Birkhäuser (2016)

  65. Saker, S.H., Tunç, C., Mahmoud, R.R.: New Carlson–Bellman and Hardy–Littlewood dynamic inequalities. Math. Inequal. Appl. 21, 967–983 (2018)

    MathSciNet  MATH  Google Scholar 

  66. Sakthivel, R., Revathi, P., Ren, Y.: Existence of solutions for nonlinear fractional stochastic differential equations. Nonlinear Anal. 81, 70–86 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  67. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives, Theory and Applications, Gordon and Breach, Yverdon (1993)

  68. Schaefer, H.H.: Banach Lattices and Positive Operators. In: Die Grundlehren der mathematischen Wissenschaften in Einzeldartstellungen, Band 215. Springer, Berlin (1974)

  69. Schwarz, H.U.: Banach Lattices and Operators. Teubner-Texte zur Mathematik, 71, Leipzig (1984)

  70. Seghier, M., Ouahab, A., Henderson, J.: Random solutions to a system of fractional differential equations via the Hadamard fractional derivative. Eur. Phys. J. Spec. Top. 226, 3525–3549 (2017)

    Article  Google Scholar 

  71. Sobczyk, H.: Stochastic Differential Equations with Applications to Physics and Engineering. Kluwer Academic Publishers, London (1991)

    MATH  Google Scholar 

  72. Son, D.T., Huong, P.T., Kloeden, P.E., Tuan, H.T.: Asymptotic separation between solutions of Caputo fractional stochastic differential equations. Stoch. Anal. Appl. 36(4), 654–664 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  73. Tsokos, C.P., Padgett, W.J.: Random Integral Equations with Applications to Life Sciences and Engineering. Academic Press, New York (1974)

    MATH  Google Scholar 

  74. Tunç, C., Golmankhaneh, A.K.: On stability of a class of second alpha-order fractal differential equations. AIMS Math. 5, 2126–2142 (2020)

    Article  MathSciNet  Google Scholar 

  75. Tunç, O., Tunç, C.: On the asymptotic stability of solutions of stochastic differential delay equations of second order. J. Taibah Univ. Sci. 13, 875–882 (2019)

    Article  MATH  Google Scholar 

  76. Vu, H.: Random fractional functional differential equations. Int. J. Nonlinear Anal. Appl. 7, 253–267 (2016)

    MATH  Google Scholar 

  77. Xu, J., Caraballo, T.: Long time behavior of fractional impulsive stochastic differential equations with infinite delay. Discrete Contin. Dyn. Syst. Ser. B 24(6), 2719–2743 (2019)

    MathSciNet  MATH  Google Scholar 

  78. Yan, Z., Lu, F.: Existence results for a new class of fractional impulsive partial neutral stochastic integro-differential equations with infinite delay. J. Appl. Anal. Comput. 5(3), 329–346 (2015)

    MathSciNet  MATH  Google Scholar 

  79. Yang, H., Kloeden, P.E., Wu, F.: Weak solution of stochastic differential equations with fractional diffusion coefficient. Stoch. Anal. Appl. 36(4), 613–621 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  80. Ye, H., Gao, J., Ding, Y.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075–1081 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The research of Juan J. Nieto has been partially supported by the Agencia Estatal de Investigacin (AEI) of Spain, cofinanced by the European Fund for Regional Development (FEDER) corresponding to the 2014-2020 multiyear financial framework, project MTM2016-75140-P; and by Xunta de Galicia under Grant ED431C 2019/02. The research of A. Ouahab has been partially supported by the General Direction of Scientific Research and Technological Development (DGRSDT), Algeria. The authors would like to thank the anonymous referees for their careful reading of the manuscript and pertinent comments; their constructive suggestions substantially improved the quality of the work.

Author information

Authors and Affiliations

Authors

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ouaddah, A., Henderson, J., Nieto, J.J. et al. A Fractional Bihari Inequality and Some Applications to Fractional Differential Equations and Stochastic Equations. Mediterr. J. Math. 18, 242 (2021). https://doi.org/10.1007/s00009-021-01917-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01917-z

Keywords

Mathematics Subject Classification

Navigation