Skip to main content
Log in

Dual Space Valued Mappings on C\(^*\)-Algebras Which Are Ternary Derivable at Zero

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Extending derivability of a mapping from one point of a \(\mathrm C^*\)-algebra to the entire space is one of the interesting problems in derivation theory. In this paper, by considering a \(\mathrm C^*\)-algebra A as a Jordan triple with triple product \(\{a,b,c\}=(ab^*c+cb^*a)/2\), and its dual space as a ternary A-module, we prove that a continuous conjugate linear mapping T from A into its dual space is a ternary derivation whenever it is ternary derivable at zero and the element T(1) is skew-symmetric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akemann, C.A.: The dual space of an operator algebra. Trans. Am. Math. Soc. 126, 286–302 (1967). https://doi.org/10.2307/1994455

    Article  MathSciNet  MATH  Google Scholar 

  2. Alaminos, J., Brešar, M., Extremera, J., Villena, A.R.: Maps preserving zero products. Stud. Math. 193(2), 131–159 (2009). https://doi.org/10.4064/sm193-2-3

    Article  MathSciNet  MATH  Google Scholar 

  3. Ayupov, S., Kudaybergenov, K., Peralta, A.M.: A survey on local and 2-local derivations on \(\rm C^*\)- and von Neumann algebras. In: Topics in Functional Analysis and Algebra, Contemp. Math., vol. 672, 73–126. Amer. Math. Soc., Providence, RI, (2016) https://doi.org/10.1090/conm/672/13462

  4. Brešar, M.: Characterizing homomorphisms, derivations and multipliers in rings with idempotents. Proc. R. Soc. Edinb. Sect. A 137(1), 9–21 (2007). https://doi.org/10.1017/S0308210504001088

    Article  MathSciNet  MATH  Google Scholar 

  5. Burgos, M., Cabello, J.C., Peralta, A.M.: Weak-local triple derivations on \(\rm C^*\)-algebras and \(\rm J\!B^*\)-triples. Linear Algebra Appl. 506, 614–627 (2016). https://doi.org/10.1016/j.laa.2016.06.042

    Article  MathSciNet  MATH  Google Scholar 

  6. Chebotar, M.A., Ke, W.-F., Lee, P.-H.: Maps characterized by action on zero products. Pac. J. Math. 216(2), 217–228 (2004). https://doi.org/10.2140/pjm.2004.216.217

    Article  MathSciNet  MATH  Google Scholar 

  7. Conway, J.B.: A course in functional analysis, second ed. In: Graduate Texts in Mathematics, vol. 96, Springer-Verlag, New York (1990)

  8. Essaleh, A.B.A., Peralta, A.M.: Linear maps on \(\rm C^*\)-algebras which are derivations or triple derivations at a point. Linear Algebra Appl. 538, 1–21 (2018). https://doi.org/10.1016/j.laa.2017.10.009

    Article  MathSciNet  MATH  Google Scholar 

  9. Godefroy, G., Iochum, B.: Arens-regularity of Banach algebras and the geometry of Banach spaces. J. Funct. Anal. 80(1), 47–59 (1988). https://doi.org/10.1016/0022-1236(88)90064-X

    Article  MathSciNet  MATH  Google Scholar 

  10. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. In: American Mathematical Society Colloquium Publications, vol. 31, rev. ed. American Mathematical Society, Providence, (1957)

  11. Ho, T., Peralta, A.M., Russo, B.: Ternary weakly amenable \(\rm C^*\)-algebras and \(\rm J\!B^*\)-triples. Q. J. Math. 64(4), 1109–1139 (2013). https://doi.org/10.1093/qmath/has032

    Article  MathSciNet  MATH  Google Scholar 

  12. Jing, W., Lu, S.J., Li, P.T.: Characterisations of derivations on some operator algebras. Bull. Austral. Math. Soc. 66(2), 227–232 (2002). https://doi.org/10.1017/S0004972700040077

    Article  MathSciNet  MATH  Google Scholar 

  13. Kadison, R.V.: Derivations of operator algebras. Ann. Math. (2) 83, 280–293 (1966). https://doi.org/10.2307/1970433

    Article  MathSciNet  MATH  Google Scholar 

  14. Kadison, R.V.: Local derivations. J. Algebra 130(2), 494–509 (1990). https://doi.org/10.1016/0021-8693(90)90095-6

    Article  MathSciNet  MATH  Google Scholar 

  15. Kaup, W.: A Riemann mapping theorem for bounded symmetric domains in complex Banach spaces. Math. Z. 183(4), 503–529 (1983). https://doi.org/10.1007/BF01173928

    Article  MathSciNet  MATH  Google Scholar 

  16. Li, J., Pan, Z.: Annihilator-preserving maps, multipliers, and derivations. Linear Algebra Appl. 432(1), 5–13 (2010). https://doi.org/10.1016/j.laa.2009.06.002

    Article  MathSciNet  MATH  Google Scholar 

  17. Lu, F.: Characterizations of derivations and Jordan derivations on Banach algebras. Linear Algebra Appl. 430(8–9), 2233–2239 (2009). https://doi.org/10.1016/j.laa.2008.11.025

    Article  MathSciNet  MATH  Google Scholar 

  18. Mackey, M.: Local derivations on Jordan triples. Bull. Lond. Math. Soc. 45(4), 811–824 (2013). https://doi.org/10.1112/blms/bdt007

    Article  MathSciNet  MATH  Google Scholar 

  19. Mohammadzadeh, S., Vishki, H.R.E.: Arens regularity of module actions and the second adjoint of a derivation. Bull. Aust. Math. Soc. 77(3), 465–476 (2008). https://doi.org/10.1017/S0004972708000403

    Article  MathSciNet  MATH  Google Scholar 

  20. Murphy, G.J.: \(\rm C^*\)-Algebras and Operator Theory. Academic Press Inc., Boston (1990)

    MATH  Google Scholar 

  21. Niazi, M., Khadem-Maboudi, A.A., Miri, M.R.: Ternary \(n\)-weak amenability of certain commutative Banach algebras and \(\rm J\!BW^*\)-triples. Bull. Iran. Math. Soc. 46(6), 1791–1800 (2020). https://doi.org/10.1007/s41980-020-00359-9

    Article  MathSciNet  MATH  Google Scholar 

  22. Niazi, M., Peralta, A.M.: Weak-2-local derivations on \(M_n\). Filomat 31(6), 1687–1708 (2017). https://doi.org/10.2298/FIL1706687N

    Article  MathSciNet  MATH  Google Scholar 

  23. Niazi, M., Peralta, A.M.: Weak-2-local \(^\ast \)-derivations on \(B(H)\) are linear \(^\ast \)-derivations. Linear Algebra Appl. 487, 276–300 (2015). https://doi.org/10.1016/j.laa.2015.09.028

    Article  MathSciNet  MATH  Google Scholar 

  24. Peralta, A.M., Russo, B.: Automatic continuity of derivations on \(\rm C^*\)-algebras and \(\rm J\!B^*\)-triples. J. Algebra 399, 960–977 (2014). https://doi.org/10.1016/j.jalgebra.2013.10.017

    Article  MathSciNet  MATH  Google Scholar 

  25. Ringrose, J.R.: Automatic continuity of derivations of operator algebras. J. Lond. Math. Soc. (2) 5, 432–438 (1972). https://doi.org/10.1112/jlms/s2-5.3.432

    Article  MathSciNet  MATH  Google Scholar 

  26. Sakai, S.: \(\rm C^*\)-algebras and \(\rm W^*\)-algebras. In: Classics in Mathematics. Springer-Verlag, Berlin (1998) https://doi.org/10.1007/978-3-642-61993-9 (Reprint of the 1971 edition)

  27. Šemrl, P.: Local automorphisms and derivations on \({\mathscr {B}}(H)\). Proc. Am. Math. Soc. 125(9), 2677–2680 (1997). https://doi.org/10.1090/S0002-9939-97-04073-2

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, L., Zhu, J., Wu, J.: All-derivable points in nest algebras. Linear Algebra Appl. 433(1), 91–100 (2010). https://doi.org/10.1016/j.laa.2010.01.034

    Article  MathSciNet  MATH  Google Scholar 

  29. Zhu, J., Xiong, C.P.: Derivable mappings at unit operator on nest algebras. Linear Algebra Appl. 422(2–3), 721–735 (2007). https://doi.org/10.1016/j.laa.2006.12.002

    Article  MathSciNet  MATH  Google Scholar 

  30. Zhu, J., Zhao, S.: Characterizations of all-derivable points in nest algebras. Proc. Am. Math. Soc. 141(7), 2343–2350 (2013). https://doi.org/10.1090/S0002-9939-2013-11511-X

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the anonymous referee for the careful review and the helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohsen Niazi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Niazi, M., Miri, M.R. Dual Space Valued Mappings on C\(^*\)-Algebras Which Are Ternary Derivable at Zero. Mediterr. J. Math. 18, 245 (2021). https://doi.org/10.1007/s00009-021-01910-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01910-6

Keywords

Mathematics Subject Classification

Navigation