Skip to main content
Log in

A Second-Order Post-processing Technique for Singularly Perturbed Volterra Integro-differential Equations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, a singularly perturbed Volterra integro- differential equation is being surveyed. On a piecewise-uniform Shishkin mesh, a fitted mesh finite difference approach is applied using a composite trapezoidal rule in the case of integral component and a finite difference operator for the derivative component. The proposed technique acquires a uniform convergence in accordance with the perturbation parameter. To improve the accuracy of the computed solution, an extrapolation, specifically Richardson extrapolation, is used measured in the discrete maximum norm and almost second-order convergence is attained. Further numerical results are provided to assist the theoretical estimates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

v(t):

Solution of model problem

\(\upsilon _0\) :

Initial value of the problem

\(\varepsilon \) :

Small parameter

\(\tau \) :

Transition parameter used in Shishkin mesh

\(\Omega _N\) :

Domain with N points

\(\Omega _{2N}\) :

Domain with 2N points

\(R_i,\;R_{1,i},\; R_{2,i},\; R_{3,i}\) :

Remainder terms from the discrete scheme

\(y(t), y^{N}(t)\) :

Solution of discrete problem on \(\Omega _N\)

\(y^{2N}(t)\) :

Solution of discrete problem on \(\Omega _{2N}\)

\(y_{extp}(t)\) :

Extrapolation formula on \(\Omega ^N\)

\(E_{\varepsilon }^N\) :

Pointwise error formula

\(p_\varepsilon ^N\) :

Rate of convergence

References

  1. Ali, A., Seadawy, A.R., Lu, D.: New solitary wave solutions of some nonlinear models and their applications. Adv. Differ. Equ. 1, 1–12 (2018)

    MathSciNet  MATH  Google Scholar 

  2. Ali, I., Seadawy, A.R., Rizvi, S.R., Younis, M., Ali, K.: Conserved quantities along with Painleve analysis and Optical solitons for the nonlinear dynamics of Heisenberg ferromagnetic spin chains model. Int. J. Mod. Phys. B 34(30), 2050283 (2020)

    Article  MathSciNet  Google Scholar 

  3. Amiraliyev, G.M., Durmaz, M.E., Kudu, M.: Uniform convergence results for singularly perturbed Fredholm integro-differential equation. J. Math. Anal. 9(6), 55–64 (2018)

    MathSciNet  Google Scholar 

  4. Amiraliyev, G.M., Durmaz, M.E., Kudu, M.: Fitted second order numerical method for a singularly perturbed Fredholm integro-differential equation. Bull. Belg. Math. Soc. Simon Steven 27(1), 71–88 (2020). https://doi.org/10.36045/bbms/1590199305

    Article  MathSciNet  MATH  Google Scholar 

  5. Amiraliyev, G.M., Mamedov, Y.D.: Difference schemes on the uniform mesh for singularly perturbed pseudo-parabolic equations. Turk. J. Math. 19, 207–222 (1995)

    MATH  Google Scholar 

  6. Amiraliyev, G.M., Sevgin, S.: Uniform difference method for singularly perturbed Volterra integro-diffrential equations. Appl. Math. Comput. 179(2), 731–741 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Amiraliyev, G.M., Yapman, O., Kudu, M.: A fitted approximate method for a Volterra delay-integro-differential equation with initial layer. Hacet. J. Math. Stat. 48(5), 1417–1429 (2019). https://doi.org/10.15672/hjms.2018.582

    Article  MathSciNet  MATH  Google Scholar 

  8. Angell, J.S., Olmstead, W.E.: Singularly perturbed Volterra integral equations. SIAM J. Appl. Math. 47(1), 1–14 (1987)

    Article  MathSciNet  Google Scholar 

  9. Arshad, M., Seadawy, A.R., Lu, D.: Bright-dark solitary wave solutions of generalized higher-order nonlinear Schr\(\ddot{o}\)dinger equation and its applications in optics. J. Electromagn. Waves Appl. 31(16), 1711–1721 (2017)

    Article  Google Scholar 

  10. Assari, P., Dehghan, M.: A meshless local discrete Galerkin (MLDG) scheme for numerically solving two-dimensional nonlinear Volterra integral equations. Appl. Math. Comput. 350, 249–265 (2019)

    MathSciNet  MATH  Google Scholar 

  11. Cheemaa, N., Seadawy, A.R., Chen, S.: Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics. Eur. Phys. J. Plus 134(3), 1–9 (2019)

    Article  Google Scholar 

  12. Cheemaa, N., Seadawy, A.R., Chen, S.: More general families of exact solitary wave solutions of the nonlinear Bright-dark solitary wave solutions of generalized higher-order nonlinear Schr\(\ddot{o}\)dinger equation and its applications in optics equation with their applications in nonlinear optics. Eur. Phys. J. Plus 133(12), 1–9 (2018)

    Article  Google Scholar 

  13. Cushing, J.M.: Integro-Differential Equations and Delay Models in Population Dynamics. Lecture Notes in Biomathematics. Springer, Berlin (1977)

    Book  Google Scholar 

  14. Dehghan, M.: Solution of a partial integro-differential equation arising from viscoelasticity. Int. J. Comput. Math. 83(1), 123–129 (2006)

    Article  MathSciNet  Google Scholar 

  15. Dehghan, M., Salehi, R.: The numerical solution of the non-linear integro-differential equations based on the meshless method. J. Comput. Appl. Math. 236(9), 2367–2377 (2012)

    Article  MathSciNet  Google Scholar 

  16. Fakhar-Izadi, F., Dehghan, M.: Space-time spectral method for a weakly singular parabolic partial integro-differential equation on irregular domains. Comput. Math. Appl. 67(10), 1884–1904 (2014)

    Article  MathSciNet  Google Scholar 

  17. Gripenberg, G., Londen, S.O., Staffans, O.: Volterra Integral and Functional Equations. Encyclopedia of Mathematics and Its Application. Cambridge University Press, Cambridge (1990)

    Book  Google Scholar 

  18. Hosseinzadeh, H., Dehghan, M., Sedaghatjoo, Z.: The stability study of numerical solution of Fredholm integral equations of the first kind with emphasis on its application in boundary elements method. Appl. Numer. Math. 158, 134–151 (2020)

    Article  MathSciNet  Google Scholar 

  19. Iragi, B.C., Munyakazi, J.B.: New parameter-uniform discretisations of singularly perturbed Volterra integro-differential equations Appl. Math. Inf. Sci. 12(3), 517–527 (2018)

    Article  MathSciNet  Google Scholar 

  20. Iragi, B.C., Munyakazi, J.B.: A uniformly converegent numerical method for a singularly perturbed Volterra integro-differential equations. Int. J. Comput. Math. 97(4), 759–771 (2020)

    Article  MathSciNet  Google Scholar 

  21. Kauthen, J.P.: A survey of singularly perturbed Volterra equations. Appl. Numer. Math. 24(2), 95–114 (1997)

    Article  MathSciNet  Google Scholar 

  22. Kudu, M., Amirali, I., Amiraliyev, G.M.: A finite-difference method for a singularly perturbed delay integro-differential equation. J. Comput. Appl. Math. 308, 379–390 (2016). https://doi.org/10.1016/j.cam.2016.06.018

    Article  MathSciNet  MATH  Google Scholar 

  23. Lodge, A.S., McLeod, J.B., Nohel, J.A.: A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology. Proc. R. Soc. Edinb. A 80(1–2), 99–137 (1978)

    Article  Google Scholar 

  24. Miller, J.J.H., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems. World Scientific Publishing Co., Pte. Ltd., Singapore (1996)

    Book  Google Scholar 

  25. Mohapatra, J., Natesan, S.: Uniformly convergent second-order numerical method for singularly perturbed delay differential equations. Neural. Parallel Sci. Comput. 16(23), 353–370 (2008)

    MathSciNet  MATH  Google Scholar 

  26. Natividad, M.C., Stynes, M.: Richardson extrapolation for a convection diffusion problem using a Shishkin mesh. Appl. Numer. Math. 45, 315–329 (2003)

    Article  MathSciNet  Google Scholar 

  27. Raffou, Y., Rai, H.: Uniform stability in nonlinear infinite delay Volterra integro-differential equations using lyapunov functionals. Nonauton. Dyn. Syst. 3(1), 14–23 (2016)

    MathSciNet  MATH  Google Scholar 

  28. Raftari, B.: Numerical solutions of the linear Volterra integro-differential equations: homotopy perturbation method and finite difference method. World Appl. Sci. J. 9, 7–12 (2010)

    Google Scholar 

  29. Ramos, I.J.: Exponential techniques and implicit Runge Kutta methods for singularly perturbed Volterra integro-differential equations. Neural Parallel Sci. Comput. 16(3), 387–404 (2008)

    MathSciNet  MATH  Google Scholar 

  30. Seadawy, A.R., Cheemaa, N.: Applications of extended modified auxiliary equation mapping method for high-order dispersive extended nonlinear Schr\(\ddot{o}\)dinger equation in nonlinear optics. Mod. Phys. Lett. B 33(18), 1950203 (2019)

    Article  Google Scholar 

  31. Seadawy, A.R., Cheemaa, N.: Some new families of spiky solitary waves of one-dimensional higher-order K-dV equation with power law nonlinearity in plasma physics. Indian J. Phys. 94(1), 117–126 (2020)

    Article  Google Scholar 

  32. Seadawy, A.R., Cheemaa, N.: Propagation of nonlinear complex waves for the coupled nonlinear Schr\(\ddot{o}\)dinger Equations in two core optical fibers. Phys. A 529, 121330 (2019)

    Article  MathSciNet  Google Scholar 

  33. Seadawy, A.R., Lu, D., Iqbal, M.: Application of mathematical methods on the system of dynamical equations for the ion sound and Langmuir waves. Pramana 93(1), 1–12 (2019)

    Article  Google Scholar 

  34. Sevgin, S.: Numerical solution of a singularly perturbed Volterra integro-differential equations. Adv. Differ. Equ. 1, 1–15 (2014)

    MathSciNet  MATH  Google Scholar 

  35. Yapman, O., Amiraliyev, G.M.: A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation. Int. J. Comput. Math. 97(6), 1293–1302 (2020)

    Article  MathSciNet  Google Scholar 

  36. Younas, U., Seadawy, A.R., Younis, M., Rizvi, S.T.R.: Optical solitons and closed form solutions to the (3+1)-dimensional resonant Schr\(\ddot{o}\)dinger dynamical wave equation. Int. J. Mod. Phys. B 34(30), 2050291 (2020)

    Article  Google Scholar 

  37. Zhao, Y., Zhao, F.: The analytical solution of parabolic Volterra integro-differential equations in the infinite domain. Entropy 18(10), 344 (2016)

    Article  MathSciNet  Google Scholar 

  38. Zhongdi, C., Lifeng, X.: A parameter robust numerical method for a singularly perturbed Volterra equation in security technologies. Matrix 1, 20–22 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilhame Amirali.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Panda, A., Mohapatra, J. & Amirali, I. A Second-Order Post-processing Technique for Singularly Perturbed Volterra Integro-differential Equations. Mediterr. J. Math. 18, 231 (2021). https://doi.org/10.1007/s00009-021-01873-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01873-8

Keywords

Mathematics Subject Classification

Navigation