Skip to main content
Log in

Approximate Solutions to Euler–Bernoulli Beam Type Equation

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

This article deals with Euler–Bernoulli beam type equation subject to initial and boundary conditions. Semigroup theory of bounded linear operators, Rothe’s time-discretization method and Gronwall’s inequality are used to establish approximate solutions, and proved the existence of a unique strong solution. Some error estimates have also been discussed. An example is provided to illustrate the main result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baglan, I.: Fourier method for inverse coefficient Euler–Bernoulli beam equation. Commun. Fac. Sci. Univ. Ank. Ser. A1. Math. Stat. 68(1), 514–527 (2019)

    MathSciNet  Google Scholar 

  2. Bahuguna, D., Pani, A.K., Raghavendra, V.: Rothe’s method to semilinear hyperbolic integrodifferential equation via abstract integrodifferential equations. Appl. Anal. 3, 153–167 (1990)

    Google Scholar 

  3. Bahuguna, D., Raghavendra, V.: Rothe’s method to parabolic integrodifferential equation via abstract integrodifferential equations. Appl. Anal. 33, 153–167 (1989)

    Article  MathSciNet  Google Scholar 

  4. Bassuony, M.A., Abd-Elhameed, W.M., Doha, E.H., Youssri, Y.H.: A Legendre-Laguerre-Galerkin method for uniform Euler-Bernoulli beam equation. East Asian J. Appl. Math. 8(2), 280–295 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bouziani, A., Merazga, N.: Rothe time-discretization method applied to a quasilinear wave equation subject to integral conditions. Adv. Differ. Equ. 2004(3), 211–235 (2004)

    Article  MathSciNet  Google Scholar 

  6. Bouziani, A., Merazga, N.: Solution to a semilinear pseudoparabolic problem with integral conditions. Electron. J. Differ. Equ. 2006(115), 1–18 (2006)

    MathSciNet  MATH  Google Scholar 

  7. Bouziani, A., Merazga, N.: Solution to a transmission problem for quasilinear pseudoparabolic equations by the Rothe method. Electron. J. Qual. Theory Differ. Equ. 2007(14), 1–27 (2007)

    Article  MathSciNet  Google Scholar 

  8. Bouziani, A.: Application of Rothe’s method to a semilinear hyperbolic equation. Georgian Math. J. 17, 437–458 (2010)

    Article  MathSciNet  Google Scholar 

  9. Bouziani, A., Mechri, R.: The Rothe’s Method to a parabolic Integrodifferential Equation with a Nonclassical Boundary conditions. Int. J. Stoch. Anal. 2010, Art. ID 519684, 1-16 (2010)

  10. Chaoui, A., Guezane-Lakoud, A.: Rothe-Galerkin’s method for a nonlinear integrodifferential equation. Bound. Value Probl. 2012(10), 1–15 (2012)

  11. Chaoui, A., Guezane-Lakoud, A.: Solution to an integrodifferential equation with integral condition. Appl. Math. Comput. 266, 903–908 (2015)

    MathSciNet  MATH  Google Scholar 

  12. Chaoui, A., Ellaggoune, F., Guezane-Lakoud, A.: Full discretization of wave equation. Bound. Value Probl. 2015, 2015:133, 1-11 (2015)

  13. Chen, B., Gao, Y., Li, Y.: Periodic solutions to nonlinear Euler-Bernoulli beam equations. Commun. Math. Sci. 17(7), 2005–2034 (2019)

    Article  MathSciNet  Google Scholar 

  14. Guezane-Lakoud, A., Belakroum, D.: Rothe’s method for a telegraph equation with integral conditions. Nonlinear Anal. 70(11), 3842–3853 (2009)

    Article  MathSciNet  Google Scholar 

  15. Guezane-Lakoud, A., Jasmati, M.S., Chaoui, A.: Rothe’s method for an integrodifferential equation with integral conditions. Nonlinear Anal. 72, 1552–1530 (2010)

    Article  MathSciNet  Google Scholar 

  16. Guezane-Lakoud, A., Belakroum, D.: Weak solvability of a hyperbolic integro-differential equation with integral condition. Electron. J. Qual. Theory Differ. Equ. 2011(37), 1–16 (2011)

    MathSciNet  MATH  Google Scholar 

  17. Guezane-Lakoud, A., Chaoui, A.: Rothe’s Method Applied to semilinear Hyperbolic Integrodifferetial equation with integral condition. Int. J. open Problem Compt. Math. 4(1),(2011). (March 2011)

  18. Guezane-Lakoud, A., Belakroum, D.: Time-descretization schema for an integrodifferential Sobolev type equation with integral conditions. App. Math. Comput. 218, 4695–4702 (2012)

    Article  Google Scholar 

  19. Gupta, N., Maqbul, Md.: Solutions to Rayleigh-Love equation with constant coefficients and delay forcing term. Appl. Math. Comput. 355, 123–134 (2019)

    MathSciNet  MATH  Google Scholar 

  20. Hermith, K.A.A., Adama, C., Augustin, T.K.: Numerical approximation of spectrum for variable coefficients Euler-Bernoulli beams under a force control in position and velocity. Int. J. Appl. Math. 30(3), 211–228 (2017)

    Article  MathSciNet  Google Scholar 

  21. Kacur, J.: Application of Rothe’s method to perturbed linear hyperbolic equations and variational inequalities. Czech. Math. J. 34(109), 92–106 (1984)

    Article  MathSciNet  Google Scholar 

  22. Kato, T.: Nonlinear semigroup and evolution equations. Math. Soc. Jpn. 19, 508–520 (1967)

    Article  MathSciNet  Google Scholar 

  23. Kundu, B., Ganguli, R.: Analysis of weak solution of Euler-Bernoulli beam with axial force. Appl. Math. Comput. 298, 247–260 (2017)

    MathSciNet  MATH  Google Scholar 

  24. Maqbul, Md., Raheem, A.: Time-discretization schema for a semilinear pseudo-parabolic equation with integral conditions. Appl. Num. Math. 148, 18–27 (2020)

    Article  MathSciNet  Google Scholar 

  25. Merazga, N., Bouziani, A.: Rothe time-discretization method for a nonlocal problem arising in thermoelaticity. J. App. Math. Stoc. Anal. 2005, 2005:1, 13-28 (2005)

  26. Merazga, N., Bouziani, A.: Rothe method for a mixed problem with an integral condition for the two-dimensional diffusion equation. Abstr. Appl. Anal. 2003(16), 899–922 (2003)

    Article  MathSciNet  Google Scholar 

  27. Merazga, N., Bouziani, A.: Rothe time-discretization method for the semilinear heat equation subject to a nonlocal boundary condition. J. Appl. Math. Stoch. Anal. 2006, Art. ID 34053, 1-20 (2006)

  28. Pazy, A.: Semigroup of linear operators and application to partial differential equations. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  29. Raheem, A., Bahuguna, D.: A study of delayed cooperation diffusion system with Dirichlet boundary conditions. Appl. Math. Comput. 218, 4169–4176 (2011)

    MathSciNet  MATH  Google Scholar 

  30. Raheem, A., Bahuguna, D.: Delay differential equations with homogeneous integral conditions. Electron. J. Differ. Equ. 2013(78), 1–11 (2013)

    MathSciNet  MATH  Google Scholar 

  31. Rektorys, K.: The Method of Discretization in time and Partial Differential Equations, D. Reidel Publishing Company, Dordrecht (1982)

    MATH  Google Scholar 

  32. Yu, C., Zhang, J., Chen, Y., Feng, Y., Yang, A.: A numerical method for solving fractional-order viscoelastic Euler-Bernoulli beams. Chaos Solitons Fractals 128, 275–279 (2019)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The second author would like to thank MHRD, Govt. of India for supporting her with a senior research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Maqbul.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maqbul, M., Gupta, N. Approximate Solutions to Euler–Bernoulli Beam Type Equation. Mediterr. J. Math. 18, 196 (2021). https://doi.org/10.1007/s00009-021-01833-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01833-2

Keywords

Mathematics Subject Classification

Navigation