Skip to main content
Log in

Some Properties of Mappings Admitting General Poisson Representations

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

The aim of this paper is twofold. First, we adapt the Burgeth’s spherical cap method [Manuscripta Math. 77:283–291, 1992 by Burgeth and Proceedings of the NATO Advanced Research Workshop on Classical and Modem Potential Theory and Applications, pp 133–147, 1994 by Burgeth] to the planar case to establish some Schwarz type lemmas for mappings admitting general Poisson type representations on the unit disk. Second, we prove a Landau type theorem for \(T_\alpha \)-harmonic functions introduced by Olofsson (J Anal Math 123:227–249, 2014).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrews, G., Askey, R., Roy, R.: Special functions. Encyclopedia of mathematics and its applications, vol. 71, p. 664. Cambridge University Press, Cambridge (1999)

    MATH  Google Scholar 

  2. Axler, S., Bourdon, P., Ramey, W.: Harmonic function theory. Springer-Verlag, New York (1992)

    Book  Google Scholar 

  3. Burgeth, B.: A Schwarz lemma for harmonic and hyperbolic-harmonic functions in higher dimensions. Manuscripta Math. 77, 283–291 (1992)

    Article  MathSciNet  Google Scholar 

  4. Burgeth, B.: Schwarz type inequalities for harmonic functions in the ball. In: GowriSankaran K et al (ed) Proceedings of the NATO Advanced Research Workshop on Classical and Modem Potential Theory and Applications, Kluwer Academic Publishers, pp 133–147 (1994)

  5. Chen, H.H.: The Schwarz–Pick lemma and Julia lemma for real planar harmonic mappings. Sci. China Math. 56(11), 2327–2334 (2013)

    Article  MathSciNet  Google Scholar 

  6. Chen, H., Gauthier, P.M., Hengartner, W.: Bloch constants for planar harmonic mappings. Proc. Am. Math. Soc. 128, 3231–3240 (2000)

    Article  MathSciNet  Google Scholar 

  7. Chen, Sh., Ponnusamy, S., Wang, X.: Bloch constant and Landau’s theorems for planar p-harmonic mappings. J. Math. Anal. Appl. 373, 102–110 (2011)

    Article  MathSciNet  Google Scholar 

  8. Chen, S., Vuorinen, M.: Some properties of a class of elliptic partial differential operator. J. Math. Anal. Appl. 431(2), 1124–1137 (2014)

    Article  MathSciNet  Google Scholar 

  9. Chen, S.H., Mateljević, M., Ponnusamy, S., Wang, X.: Schwarz-Pick lemma, equivalent modulus, integral means and Bloch constant for real harmonic functions. Acta. Math. Sin Chin Ser 60(6), 1025–1036 (2017)

    Google Scholar 

  10. Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38, 829–840 (1989)

    Article  MathSciNet  Google Scholar 

  11. Dai, S., Chen, H.: A Schwarz lemma for harmonic functions in the real unit ball. Acta Math. Sci. 39, 1339–1344 (2019)

    Article  MathSciNet  Google Scholar 

  12. Heinz, E.: On one-to-one harmonic mappings. Pac. J. Math. 9, 101–105 (1959)

    Article  MathSciNet  Google Scholar 

  13. Hethcote, H.W.: Schwarz lemma analogues for harmonic functions. Int. J. Math. Educ. Sci. Technol. 8(1), 65–67 (1977)

    Article  MathSciNet  Google Scholar 

  14. Kalaj, D.: Heinz–Schwarz inequalities for harmonic mappings in the unit ball. Ann. Acad. Sci. Fenn. Math. 41, 457–464 (2016)

    Article  MathSciNet  Google Scholar 

  15. Kalaj, D., Vuorinen, M.: On harmonic functions and the Schwarz lemma. Proc. Am. Math. Soc. 140(1), 161–165 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, S.: Concise formulas for the area and volume of a hyperspherical cap. Asian J. Math. Stat. 4(1), 66–70 (2011)

    Article  MathSciNet  Google Scholar 

  17. Mateljević, M.: Schwarz lemma and Kobayashi metrics for harmonic and holomorphic functions. J. Math. Anal. Appl. 464, 78–100 (2018)

    Article  MathSciNet  Google Scholar 

  18. Mateljević, M.: Schwarz type inequalities for harmonic and related functions in the disk and the ball. In: Lecko, A. (ed.) Current research in mathematical and computer sciences II, pp. 157–194. Publisher UWM, Olsztyn (2018)

    Google Scholar 

  19. Mateljevic, M., Khalfallah, A.: On some Schwarz type inequalities. J. Inequal. Appl. 164, 1–9 (2020)

    MathSciNet  Google Scholar 

  20. Mateljević, M., Svetlik, M.: Hyperbolic metric on the strip and the Schwarz lemma for HQR mappings. Appl. Anal. Discret. Math. 14, 150–168 (2020)

    Article  MathSciNet  Google Scholar 

  21. Olofsson, A.: Differential operators for a scale of Poisson type kernels in the unit disc. J. Anal. Math. 123, 227–249 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel Khalfallah.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalfallah, A., Mateljević, M. & Mhamdi, M. Some Properties of Mappings Admitting General Poisson Representations. Mediterr. J. Math. 18, 193 (2021). https://doi.org/10.1007/s00009-021-01827-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01827-0

Keywords

Mathematics Subject Classification

Navigation