Skip to main content
Log in

On the Sum of Generalized Frames in Hilbert Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \({\mathcal {H}}\) be a separable Hilbert space. It is known that the finite sum of Bessel sequences in \({\mathcal {H}}\) is still a Bessel sequence. But the finite sum of generalized notions of frames does not necessarily remain stable in its initial form. In this paper, for a prescribed Bessel sequence \(F=\{f_n\}_{n=1}^\infty \), we introduce and study \({\mathcal {KF}}\), the set consisting of all operators \(K\in {\mathcal {B}}({\mathcal {H}})\), such that \(\{f_n\}_{n=1}^\infty \) is a K-frame. We show that \({\mathcal {KF}}\) is a right ideal of \({\mathcal {B}}({\mathcal {H}})\). We indicate by an example that \({\mathcal {KF}}\) is not necessarily a left ideal. Moreover, we provide some sufficient conditions for the finite sum of K-frames to be a K-frame. We also use some examples to compare our results with existing ones. These examples demonstrate that our achievements do not depend on the available results. Furthermore, we study the same subject for K-g-frames and controlled frames and get some similar significant results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arabyani Neyshaburi, F., Arefijamaal, A.A.: Some constructions of K-frames and their duals. Rocky Mt. J. Math. 47(6), 1749–1764 (2017)

    MathSciNet  MATH  Google Scholar 

  2. Balasz, P., Antonie, J.-P., Graybos, A.: Weighted and controlled frames: mutual Relationship and first numerical properties. Int. J. Wavelets Multiresolut. Inf. Process. 8(1), 109–132 (2010)

    Article  MathSciNet  Google Scholar 

  3. Bogdanova, I., Vandergheynst, P., Antoine, J.P., Jacques, L., Morvidone, M.: Stereographic wavelet frames on the sphere. Appl. Comput. Harmon. Anal. 19(2), 223–252 (2005)

    Article  MathSciNet  Google Scholar 

  4. Casazza, P.G.: The art of frame theory. Taiwan. J. Math. 4(2), 129–201 (2000)

    Article  MathSciNet  Google Scholar 

  5. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser/Springer, Cham (2016)

    MATH  Google Scholar 

  6. Chui, C.K.: An Introduction to Wavelets. Academic Press Inc, Boston (1992)

    MATH  Google Scholar 

  7. Daubechies, I., Grossman, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27(5), 1271–1283 (1986)

    Article  MathSciNet  Google Scholar 

  8. Daubechies, I.: Ten Lectures on Wavelets, Society for Industrial and Applied Mathematics. SIAM, Philadelphia (1992)

    Book  Google Scholar 

  9. Douglas, R.G.: On majorization, factorization, and range inclusion of operators on Hilbert space. Proc. Amer. Math. Soc. 17, 413–415 (1966)

    Article  MathSciNet  Google Scholar 

  10. Duffin, R.J., Schaefer, A.C.: A class of nonharmonic fourier series. Trans. Amer. Math. Soc. 72, 341–366 (1952)

    Article  MathSciNet  Google Scholar 

  11. G\(\breve{a}\)vruţa, L.: On some identities and inequalities for frames in Hilbert spaces. J. Math. Anal. Appl. 321(1), 469–478 (2006)

  12. G\(\breve{a}\)vruţa, L.: Frames for operators. Appl. Comput. Harmon. Anal. 32(1), 139–144 (2012)

  13. G\(\breve{a}\)vruţa, L.: Atomic decompositions for operators in reproducing kernel Hilbert spaces. Math. Rep. (Bucur.) 17(3), 303–314 (2015)

  14. Guo, X.: Constructions of frames by disjoint frames. Numer. Funct. Anal. Optim. 35(5), 576–587 (2014)

    Article  MathSciNet  Google Scholar 

  15. Guo, X.: Canonical dual K-Bessel sequences and dual K-Bessel generators for unitary systems of Hilbert spaces. J. Math. Anal. Appl. 444(1), 598–609 (2016)

    Article  MathSciNet  Google Scholar 

  16. Han, D., Larson, D. R.: Frames, basis and group representations. Mem. Am. Math. Soc. 147(697) (2000). https://bookstore.ams.org/memo-147-697/

  17. He, M., Leng, J., Yu, J., Xu, Y.: On the Sum of K-Frames in Hilbert Spaces. Mediterr. J. Math. 17(2), 1–19 (2020). Art. 46, 19

    Article  MathSciNet  Google Scholar 

  18. Hua, D., Huang, Y.: \(K\)-g-frames and stability of \(K\)-g-frames in Hilbert spaces. J. Korean Math. Soc. 53(6), 1331–1345 (2016)

    Article  MathSciNet  Google Scholar 

  19. Huang, Y., Shi, Sh: New constructions of K-g-frames. Results Math. 73(4), 1–13 (2018). aper No. 162, 13

    Article  MathSciNet  Google Scholar 

  20. Jia, M., Zhu, Y.C.: Some results about the operator perturbation of a K-frame. Results Math. 73(4), 1–11 (2018). aper No. 138, 11

    Article  MathSciNet  Google Scholar 

  21. Janfada, M., Kamyabi Gol, R., Morshedi, V.R.: Frame for operators in finite dimensional Hilbert space. Tamkang J. Math. 49(1), 35–48 (2018)

    Article  MathSciNet  Google Scholar 

  22. Kova\(\breve{c}\)evi\(\acute{c}\), J., Chebira, A.: An introduction to frames, foundations and trends in signal processing. 2(1), 1–94 (2008)

  23. Li, X.B., Yang, S.Z., Zhu, Y.C.: Some results about operator perturbation of fusion frames in Hilbert spaces. J. Math. Anal. Appl. 421(2), 1417–1427 (2015)

    Article  MathSciNet  Google Scholar 

  24. Nouri, M., Rahimi, A., Najafzadeh, Sh: Some results on controlled K-frames in Hilbert spaces. Int. J. Anal. Appl. 16(1), 62–74 (2018)

    MATH  Google Scholar 

  25. Obeidat, S., Samarah, S., Casazza, P.G., Tremain, J.C.: Sums of Hilbert space frames. J. Math. Anal. Appl. 351(2), 579–585 (2009)

    Article  MathSciNet  Google Scholar 

  26. Ramu, G., Sam Johnson, P.: Frame operator of K-frames. SeMA J. 73(2), 171–181 (2016)

    Article  MathSciNet  Google Scholar 

  27. Sun, W.C.: G-frames and g-Riesz bases. J. Math. Anal. Appl. 322(1), 437–452 (2006)

    Article  MathSciNet  Google Scholar 

  28. Xiao, X.C., Zhu, Y.C., G\(\breve{a}\)vruţa, L.: Some properties of K-frames in Hilbert spaces. Results Math. 63(3–4), 1243–1255 (2013)

  29. Zhou, Y., Zhu, Y.C.: K-g-frames and dual g-frames for closed subspaces. Acta Math. Sin. (Chin. Ser.) 56(5), 799–806 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors express their sincere gratitude to the reviewer for his/her very careful reading of the manuscript and constructive comments on the manuscript, which substantially helped us to improve the quality of the paper. His/her invaluable comments, especially simplifying the proof of the results, improved the presentation of the manuscript significantly.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Abtahi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abtahi, F., Kamali, Z. & Keyshams, Z. On the Sum of Generalized Frames in Hilbert Spaces. Mediterr. J. Math. 18, 178 (2021). https://doi.org/10.1007/s00009-021-01811-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01811-8

Keywords

Mathematics Subject Classification

Navigation