Skip to main content
Log in

Liouville-Type Theorems for Sign-Changing Solutions to Nonlocal Elliptic Inequalities and Systems with Variable-Exponent Nonlinearities

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We consider the fractional elliptic inequality with variable-exponent nonlinearity

$$\begin{aligned} (-\Delta )^{\frac{\alpha }{2}} u+\lambda \, \Delta u \ge |u|^{p(x)}, \quad x\in {\mathbb {R}}^N, \end{aligned}$$

where \(N\ge 1\), \(\alpha \in (0,2)\), \(\lambda \in {\mathbb {R}}\) is a constant, \(p: {\mathbb {R}}^N\rightarrow (1,\infty )\) is a measurable function, and \((-\Delta )^{\frac{\alpha }{2}}\) is the fractional Laplacian operator of order \(\frac{\alpha }{2}\). A Liouville-type theorem is established for the considered problem. Namely, we obtain sufficient conditions under which the only weak solution is the trivial one. Next, we extend our study to systems of fractional elliptic inequalities with variable-exponent nonlinearities. Besides the consideration of variable-exponent nonlinearities, the novelty of this work consists in investigating sign-changing solutions to the considered problems. Namely, to the best of our knowledge, only nonexistence results of positive solutions to fractional elliptic problems were investigated previously. Our approach is based on the nonlinear capacity method combined with a pointwise estimate of the fractional Laplacian of some test functions, which was derived by Fujiwara (Math Methods Appl Sci 41:4955–4966, 2018) [see also Dao and Reissig (A blow-up result for semi-linear structurally damped \(\sigma \)-evolution equations, arXiv:1909.01181v1, 2019)]. Note that the standard nonlinear capacity method cannot be applied to the considered problems due to the change of sign of solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baras, P., Kersner, R.: Local and global solvability of a class of semilinear parabolic equations. J. Differ. Equations 68(2), 238–252 (1987)

    Article  MathSciNet  Google Scholar 

  2. Baras, P., Pierre, M.: Critère d’existence de solutions positives pour des équations semi-linéaires non monotones. Ann. Inst. H. Poincaré Anal. Non Linéaire 2, 185–212 (1985)

    Article  MathSciNet  Google Scholar 

  3. Bidaut-Véron, M.-F., Pohozaev, S.I.: Nonexistence results and estimates for some nonlinear elliptic problems. J. Anal. Math. 84, 1–49 (2001)

    Article  MathSciNet  Google Scholar 

  4. Bogdan, K., Burdzy, K., Chen, Z.-Q.: Censored stable processes. Probab. Theory Relativ. 127, 89–152 (2003)

    Article  MathSciNet  Google Scholar 

  5. Brandle, C., Colorado, E., de Pablo, A., Sanchez, U.: A concave-convex elliptic problem involving the fractional Laplacian. Proc. Edinb. Math. Soc. 143, 39–71 (2013)

    Article  MathSciNet  Google Scholar 

  6. Caffarelli, L., Silvestre, L.: An extension problem related to the fractional Laplacian. Commun. Partial Differ. Equations 32, 1245–1260 (2007)

    Article  MathSciNet  Google Scholar 

  7. Caristi, G., D’Ambrosio, L., Mitidieri, E.: Liouville theorems for some nonlinear inequalities. Proc. Steklov Inst. Math. 260, 90–111 (2008)

    Article  MathSciNet  Google Scholar 

  8. Chen, Z.-Q., Song, R.: Two-sided eigenvalue estimates for subordinate processes in domains. J. Funct. Anal. 226, 90–113 (2005)

    Article  MathSciNet  Google Scholar 

  9. Cont, R., Tankov, P.: Financial Modelling with Jump Processes. Chapman and Hall/CRC, Boca Raton (2004)

  10. Dahmani, Z., Karami, F., Kerbal, S.: Nonexistence of positive solutions to nonlinear nonlocal elliptic systems. J. Math. Anal. Appl. 346, 22–29 (2008)

    Article  MathSciNet  Google Scholar 

  11. Dancer, E.N., Yang, H., Zou, W.: Liouville-type results for a class of quasilinear elliptic systems and applications. J. Lond. Math. Soc. 99(2), 273–294 (2019)

  12. Dao, T.A., Reissig, M.: A blow-up result for semi-linear structurally damped \(\sigma \)-evolution equations (2019). arXiv:1909.01181v1

  13. Diening, L., Harjulehto, P., Hästö, P., Mizuta, Y., Shimomura, T.: Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math. 34(2), 503–522 (2009)

    MathSciNet  MATH  Google Scholar 

  14. Diening, L., Harjulehto, P., Hästö, P., Ruzicka, M.: Lebesgue and Sobolev spaces with variable exponents. Lecture Notes in Mathematics, vol. 2017. Springer, Heidelberg (2011)

  15. Farina, A., Serrin, J.: Entire solutions of completely coercive quasilinear elliptic equations. J. Differ. Equations 250(12), 4367–4408 (2011)

    Article  MathSciNet  Google Scholar 

  16. Filippucci, R.: Quasilinear elliptic systems in \({\mathbb{R}}^N\) with multipower forcing terms depending on the gradient. J. Differ. Equations. 255(7), 1839–1866 (2013)

    Article  Google Scholar 

  17. Filippucci, R.: Nonexistence of positive weak solutions of elliptic inequalities. Nonlinear Anal. 70, 2903–2916 (2009)

    Article  MathSciNet  Google Scholar 

  18. Filippucci, R.: Nonexistence of nonnegative solutions of elliptic systems of divergence type. J. Differ. Equations. 250, 572–595 (2011)

    Article  MathSciNet  Google Scholar 

  19. Filippucci, R., Vinti, F.: Coercive elliptic systems with gradient terms. Adv. Nonlinear Anal. 6(2), 165–182 (2017)

    Article  MathSciNet  Google Scholar 

  20. Fujiwara, K.: A note for the global nonexistence of semirelativistic equations with nongauge invariant power type nonlinearity. Math. Methods Appl. Sci. 41, 4955–4966 (2018)

    Article  MathSciNet  Google Scholar 

  21. Ghergu, M., Giacomoni, J., Singh, G.: Global and blow-up radial solutions for quasilinear elliptic systems arising in the study of viscous, heat conducting uids. Nonlinearity 32(4), 1546–1569 (2019)

    Article  MathSciNet  Google Scholar 

  22. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  Google Scholar 

  23. Gunzburger, M., Jian, N., Xu, F.: Analysis and approximation of a fractional Laplacian-based closure model for turbulent flows and its connection to Richardson pair dispersion. Comput. Math. Appl. 75(6), 1973–2001 (2018)

    Article  MathSciNet  Google Scholar 

  24. Ju, N.: The maximum principle and the global attractor for the dissipative 2D quasi-geostrophic equations. Commun. Math. Phys. 255, 161–181 (2005)

    Article  MathSciNet  Google Scholar 

  25. Kirane, M., Qafsaoui, M.: Global nonexistence for the Cauchy problem of some nonlinear Reaction-Diffusion systems. J. Math. Anal. Appl. 268, 217–243 (2002)

    Article  MathSciNet  Google Scholar 

  26. Kwaśnicki, M.: Ten equivalent definitions of the fractional laplace operator. Fract. Calc. Appl. Anal. 20, 7–51 (2017)

    Article  MathSciNet  Google Scholar 

  27. Michelitsch, T.M., Maugin, G.A., Nowakowski, A.F., Nicolleau, F.C.G.A., Rahman, M.: The fractional Laplacian as a limiting case of a self-similar spring model and applications to \(n\)-dimensional anomalous diffusion. Fract. Calc. Appl. Anal. 16(4), 827–859 (2013)

    Article  MathSciNet  Google Scholar 

  28. Mitidieri, E., Pohozaev, S.I.: Absence of global positive solutions of quasilinear elliptic inequalities. Dokl. Akad. Nauk 359(4), 456–460 (1998)

    MathSciNet  MATH  Google Scholar 

  29. Mitidieri, E., Pohozaev, S.I.: Nonexistence of positive solutions for quasilinear elliptic problems on \({\mathbb{R}}^N\). Proc. Steklov Inst. Math. 227, 186–216 (1999)

    Google Scholar 

  30. Mitidieri, E., Pohozaev, S.I.: Absence of positive solutions for systems of quasilinear elliptic equations and inequalities in \({\mathbb{R}}^N\). Dokl. Math. 59(3), 351–355 (1999)

    Google Scholar 

  31. Mitidieri, E., Pohozaev, S.I.: A priori estimates and the absence of solutions of nonlinear partial differential equations and inequalities. Trudy Mat. Inst. Steklova 234, 1–384 (2001)

    MathSciNet  MATH  Google Scholar 

  32. Ni, W.-M., Serrin, J.: Existence and nonexistence theorems for ground states of quasilinear partial differential equations. The anomalous case. Accad. Naz. Lincei Conv. dei Lincei. 77, 231–257 (1986)

  33. Poláčik, P., Quittner, P., Souplet, P.: Singularity and decay estimates in superlinear problems via Liouville-type theorems, Part I; elliptic systems. Duke Math. J. 139, 555–579 (2007)

    Article  MathSciNet  Google Scholar 

  34. Quaas, A., Xia, A.: A Liouville type theorem for Lane Emden systems involving the fractional Laplacian. Nonlinerity 29, 2279–2297 (2016)

    Article  MathSciNet  Google Scholar 

  35. Serrin, J., Zou, H.: Non-existence of positive solutions of Lane–Emden systems. Differ. Integral Equations 9, 635–653 (1996)

    MathSciNet  MATH  Google Scholar 

  36. Serrin, J., Zou, H.: Cauchy–Liouville and universal boundedness theorems for quasilinear elliptic equations and inequalities. Acta Math. 189(1), 79–142 (2002)

    Article  MathSciNet  Google Scholar 

  37. Silvestre, L.: Regularity of the obstacle problem for a fractional power of the Laplace operator. Commun. Pure Appl. Math. 60(1), 67–112 (2007)

    Article  MathSciNet  Google Scholar 

  38. Souplet, P.: The proof of the Lane-Emden conjecture in four space dimensions. Adv. Math. 221, 1409–1427 (2009)

    Article  MathSciNet  Google Scholar 

  39. Sun, Y.: Uniqueness result for non-negative solutions of semi-linear inequalities on Riemannian manifolds. J. Math. Anal. Appl. 419, 643–661 (2014)

    Article  MathSciNet  Google Scholar 

  40. Wang, Y., Xiao, J.: A uniqueness principle for \(u^p\le (-\Delta )^{\frac{\alpha }{2}}u\) in the Euclidean space. Commun. Contemp. Math. 1650019 (2016)

  41. Zhuo, R., Chen, W., Cui, X., Yuan, Z.: Symmetry and non-existence of solutions for a nonlinear system involving the fractional Laplacian. Discrete Contin. Dyn. Syst. 36, 1125–1141 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The second and third author extend their appreciation to the Deanship of Scientific Research at King Saud University for funding this work through research group No. RGP-1435-034.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmad Z. Fino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fino, A.Z., Jleli, M. & Samet, B. Liouville-Type Theorems for Sign-Changing Solutions to Nonlocal Elliptic Inequalities and Systems with Variable-Exponent Nonlinearities. Mediterr. J. Math. 18, 144 (2021). https://doi.org/10.1007/s00009-021-01792-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-021-01792-8

Keywords

Mathematics Subject Classification

Navigation