Skip to main content
Log in

Capacity Solution to a Nonlinear Elliptic Coupled System in Orlicz–Sobolev Spaces

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

We analyze the existence of a capacity solution to the following nonlinear elliptic coupled system, whose unknowns are the temperature inside a semiconductor material, u, and the electric potential, \(\varphi \),

$$\begin{aligned} \left\{ \begin{array}{ll} -Au= \rho (u)|\nabla \varphi |^2 &{}\quad \mathrm{in}\ \Omega , \\ \mathop {\mathrm{div}}\nolimits (\rho (u)\nabla \varphi ) =0&{}\quad \mathrm{in}\ \Omega , \\ \varphi =\varphi _0 &{}\quad \hbox {on } \partial \Omega , \\ u=0&{}\quad \mathrm{on}\, {\partial \Omega }, \end{array} \right. \end{aligned}$$

where \(\Omega \subset {\mathbb {R}}^d\), \(d\ge 2\) and \(\displaystyle Au=-\mathop {\mathrm{div}}\nolimits a(x,u,\nabla u)\) is a Leray–Lions operator defined on \(W_0^{1}L_M(\Omega )\), M is a N-function which does not have to satisfy a \(\Delta _2\) condition. Therefore, we work with generalized Orlicz–Sobolev spaces which are not necessarily reflexive. The function \(\varphi _0\) is given. The proof combines truncation methods, monotonicity techniques and regularizing methods in Orlicz spaces. We introduce a sequence of approximate problems which converges (up to a subsequence) in a certain sense to a capacity solution in the context of non-reflexive Orlicz–Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Adams, R.: Sobolev Spaces. Academic Press, New York (1975)

    MATH  Google Scholar 

  2. Antontsev, S.N., Chipot, M.: The thermistor problem: existence, smoothness, uniqueness and blowup. SIAM J. Math. Anal. 25, 1128–1156 (1994)

    Article  MathSciNet  Google Scholar 

  3. Aharouch, L., Bennouna, J.: Existence and uniqueness of solutions of unilateral problems in Orlicz spaces. Nonlinear Anal. TMA 72, 3553–3565 (2010)

    Article  MathSciNet  Google Scholar 

  4. Bass, J.: Thermoelectricity. In: Parer, S.P. (ed.) MCGraw-Hill Encyclopedia of Physics. McGraw-Hill, New York (1982)

    Google Scholar 

  5. Benkirane, A., Elmahi, A.: Almost every where convergence of the gradients of solutions to elliptic equations in Orlicz spaces and application. Nonlinear Anal. TMA 11(28), 1769–1784 (1997)

    Article  Google Scholar 

  6. Cimatti, G.: A bound for the temperature in the thermistor’s problem. IMA J. Appl. Math. 40, 15–22 (1988)

    Article  MathSciNet  Google Scholar 

  7. Cimatti, G.: Remarks on existence and uniqueness for the thermistor problem under mixed boundary conditions. Q. Appl. Math. 47, 117–121 (1989)

    Article  MathSciNet  Google Scholar 

  8. Cimatti, G., Prodi, G.: Existence results for a nonlinear elliptic system modeling a temperature dependent electrical resistor. Ann. Mat. Pure Appl. 63, 227–236 (1988)

    Article  Google Scholar 

  9. Diesselhorst, H.: Ueber das Problem eines elektrisch erwärmten Leiters. Annalen der Physik 306(2), 312–325 (1900)

    Article  Google Scholar 

  10. Donaldson, T.K., Trudinger, N.S.: Orlicz–Sobolev spaces and imbedding theorems. J. Funct. Anal. 8, 52–75 (1971)

    Article  MathSciNet  Google Scholar 

  11. Elmahi, A., Meskine, D.: Parabolic initial-boundary value problems in Orlicz spaces. Ann. Polon. Math. 85, 99–119 (2005)

    Article  MathSciNet  Google Scholar 

  12. Elmahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms in Orlicz spaces. Nonlinear Anal. TMA 60, 1–35 (2005)

    Article  MathSciNet  Google Scholar 

  13. ElMahi, A., Meskine, D.: Strongly nonlinear parabolic equations with natural growth terms and \(L^1\) data in Orlicz spaces. Portugaliae Mathematica Nova Série 62(Fasc. 2), 143–183 (2005)

    MathSciNet  MATH  Google Scholar 

  14. Howinson, S.D., Rodrigues, J.F., Shillor, M.: Stationary solutions to the thermistor problem. J. Math. Anal. Appl. 174, 573–588 (1993)

    Article  MathSciNet  Google Scholar 

  15. González Montesinos, M.T., Ortegón Gallego, F.: The evolution thermistor problem with degenerate thermal conductivity. Commun. Pure Appl. Anal. 1(3), 313–325 (2002)

    Article  MathSciNet  Google Scholar 

  16. Gonzálezy, M.T., Ortegón, F.: Algunos resultados sobre el problema del termistor. Bol. Soc. Esp. Mat. Apl. 31, 109–138 (2005)

    Google Scholar 

  17. González Montesinos, M.T., Ortegón Gallego, F.: Existence of a capacity solution to a coupled nonlinear parabolic-elliptic system. Commun. Pure Appl. Anal. 6(1), 23–42 (2007)

    Article  MathSciNet  Google Scholar 

  18. Gossez, J.-P., Mustonen, V.: Variational inequalities in Orlics-spaces. Nonlinear Anal. 11, 379–492 (1987)

    Article  MathSciNet  Google Scholar 

  19. Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with rapidly or slowly increasing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    Article  MathSciNet  Google Scholar 

  20. Gossez, J.P.: Some approximation properties in Orlicz–Sobolev. Stud. Math. 74, 17–24 (1982)

    Article  MathSciNet  Google Scholar 

  21. Krasnosel’skii, M.A., Rutickii, Ya B.: Convex functions and Orlicz spaces. Noordhoff, Groningen (1969)

    Google Scholar 

  22. Tienari, M.: A Degree Theory for a Class of Mappings of Monotone Type in Orlicz–Sobolev Spaces. Ann. Acad. Scientiarum Fennice, Helsinki (1994)

    MATH  Google Scholar 

  23. Xu, X.: A strongly degenerate system involving an equation of parabolic type and an equation of elliptic type. Commun. Partial Differ. Equ. 18, 199–213 (1993)

    Article  MathSciNet  Google Scholar 

  24. Xu, X.: A degenerate Stefan-like problem with Joule’s heating. SIAM J. Math. Anal. 23, 1417–1438 (1992)

    Article  MathSciNet  Google Scholar 

  25. Xu, X.: On the existence of bounded temperature in the thermistor problem with degeneracy. Nonlinear Anal. TMA 42, 199–213 (2000)

    Article  MathSciNet  Google Scholar 

  26. Young, J.M.: Steady state Joule heating with temperature dependent conductivities. Appl. Sci. Res. 42, 55–65 (1986)

    Article  Google Scholar 

Download references

Acknowledgements

This research was partially supported by Ministerio de Ciencia, Innovación y Universidades under Grant TEC2017-86347-C2-1-R with the participation of FEDER. We wish to thank an anonymous referee for his comments and suggestions as they have led to the improvement of the presentation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Ortegón Gallego.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moussa, H., Ortegón Gallego, F. & Rhoudaf, M. Capacity Solution to a Nonlinear Elliptic Coupled System in Orlicz–Sobolev Spaces. Mediterr. J. Math. 17, 67 (2020). https://doi.org/10.1007/s00009-020-1485-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-1485-9

Mathematics Subject Classification

Keywords

Navigation