Skip to main content
Log in

Some Hyperbolic Conservation Laws on \( {\mathbb {R}} ^{n}\)

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we prove the existence and the uniqueness of maximum classical solutions in the temporal variable for some quasi-linear hyperbolic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Anikonov, D.S., Kazantsev, S.G., Konovalova, D.S.: Differential properties of a generalized solution to a hyperbolic system of first-order differential equations. J. Appl. Ind. Math. 7(3), 313–325 (2013)

    Article  MathSciNet  Google Scholar 

  2. Arnold, V.I.: Geometrical methods in the theory of ordinary differential equations, Fundamental Principles of Mathematical Sciences, 250. Springer-Verlag, New York (1983)

    Book  Google Scholar 

  3. Bianchini, S., Bressan, A.: Vanishing viscosity solutions of nonlinear hyperbolic systems. Ann. Math. 161, 223–342 (2005)

    Article  MathSciNet  Google Scholar 

  4. Bressan, A.: Hyperbolic systems of conservation laws, The one-dimensional Cauchy problem, Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, xii+250 pp (2000)

  5. Burgers, J.: A mathematical model illustrating the theory of turbulence. Adv. Appl. Mech. 1, 171–199 (1948)

    Article  MathSciNet  Google Scholar 

  6. Chechkin, Gregory A., Goritsky, Andrey Yu.S.N.: Kruzhkov’s lectures on first-order quasilinear PDEs, Translated from the Russian, In: Analytical and numerical aspects of partial differential equations, 167, Walter de Gruyter, Berlin, Accessible at (2009) https://hal.archives-ouvertes.fr/hal-00363287/

  7. Dafermos, C.M.: Hyperbolic Conservation Laws in Continuum Physics, 3rd edn. Springer, Heidelberg (2010)

    Book  Google Scholar 

  8. Dafermos, C.M.: N-Waves in Hyperbolic Balance Laws. J. Hyperbolic Differ. Equ. 9(2), 339–354 (2012)

    Article  MathSciNet  Google Scholar 

  9. Dharmawardane, P.M.N.: Global solutions and decay property of regularity-loss type for quasi-linear hyperbolic systems with dissipation. J. Hyperbolic Differ. Equ. 03/2013, 10(01), 37-76

  10. Glimm, J., Lax, P.D.: Decay of solutions of systems of nonlinearhyperbolic conservation laws, Memoirs of the American Mathematical Society, No. 101, American Mathematical Society, Providence, R.I. (1970)

  11. Hermas, N.: Flot d’un système hyperbolique, African Diaspora. J. Math. 17(2), 1–19 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Kato, T.: The Cauchy problem for quasi-linear symmetric hyperbolic systems. Arch. Ration. Mech. Anal. 30. IX. 58(3), 181–205 (1975)

  13. Khesin, B.A., Michor, P.W.: The flow completion of the Burgers equation, Infinite dimensional groups and manifolds, IRMA Lectures 5, De Gruyter, pp. 17–26 (2004)

  14. Kochubei, A.N.: Fractional-hyperbolic systems. Fract. Calc. Appl. Anal. 16(4), 860–873 (2013)

    Article  MathSciNet  Google Scholar 

  15. Kružkov, S.N.: First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81 (123) 228–255 (1970)

  16. Lax, P.D.: Weak solutions of nonlinear hyperbolic equations and their numerical computation. CPAM 7, 159–193 (1954)

    MathSciNet  MATH  Google Scholar 

  17. Lax, P.D.: Hyperbolic systems of conservation laws. Commun. Pure Appl. Math. 10, 537–566 (1957)

    Article  Google Scholar 

  18. Lax, P. D.: The Theory of Hyperbolic Equations , Stanford Lecture Notes (1963)

  19. Lax, P.D.: Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Phys. 5, 611–613 (1964)

    Article  MathSciNet  Google Scholar 

  20. Lax, P. D.: Hyperbolic systems of conservation laws and the mathematical theory of shock waves, Society for Industrial and Applied Mathematics (SIAM) (1973)

  21. Majda, A.J.: Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Springer-Verlag, New York (1986)

    Google Scholar 

  22. Serre, D.: Systems of conservation laws 1: Hyperbolicity, entropies, shock waves, Translated from the 1996 French original by I. N. Sneddon, Cambridge University Press, Cambridge, xxii+263 (1999)

  23. Taylor, M.E.: Partial Differential Equations. Springer-Verlag, New York Inc (1996)

    Book  Google Scholar 

Download references

Acknowledgements

The authors thank the referee for his attentive and meticulous reading of the first version of the manuscript and for having pointed out some important references.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nadji Hermas.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bedida, N., Hermas, N. Some Hyperbolic Conservation Laws on \( {\mathbb {R}} ^{n}\). Mediterr. J. Math. 17, 197 (2020). https://doi.org/10.1007/s00009-020-01638-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01638-9

Keywords

Mathematics Subject Classification

Navigation