Weierstrass Representations of Lorentzian Minimal Surfaces in \(\mathbb R^4_2\)

Abstract

The minimal Lorentzian surfaces in \(\mathbb {R}^4_2\) whose first normal space is two-dimensional and whose Gauss curvature K and normal curvature \(\varkappa \) satisfy \(K^2-\varkappa ^2 >0\) are called minimal Lorentzian surfaces of general type. These surfaces admit canonical parameters and with respect to such parameters are determined uniquely up to a motion in \(\mathbb {R}^4_2\) by the curvatures K and \(\varkappa \) satisfying a system of two natural PDEs. In the present paper we study minimal Lorentzian surfaces in \(\mathbb {R}^4_2\) and find a Weierstrass representation with respect to isothermal parameters of any minimal surface with two-dimensional first normal space. We also obtain a Weierstrass representation with respect to canonical parameters of any minimal Lorentzian surface of general type and solve explicitly the system of natural PDEs expressing any solution to this system by means of four real functions of one variable.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Aleksieva, Y., Milousheva, V.: Minimal Lorentz surfaces in pseudo-Euclidean 4-space with neutral metric. J. Geom. Phys. 142, 240–253 (2019)

    MathSciNet  Article  Google Scholar 

  2. 2.

    Anciaux, H.: Minimal Submanifolds in Pseudo-Riemannian Geometry. World Scientific Publishing Co. Pte, Ltd, Singapore (2011)

    Google Scholar 

  3. 3.

    Bayard, P., Patty, V.: Spinor representation of Lorentzian surfaces in \(\mathbb{R}^{2,2}\). J. Geom. Phys. 95, 74–95 (2015)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Chaves, R.M.B., Dussan, M.P., Magid, M.: Björling problem for timelike surfaces in the Lorentz–Minkowski space. J. Math. Anal. Appl. 377(2), 481–494 (2011)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Chen, B.-Y.: Nonlinear Klein–Gordon equations and Lorentzian minimal surfaces in Lorentzian complex space forms. Taiwan. J. Math. 13(1), 1–24 (2009)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Chen, B.-Y.: Classification of minimal Lorentz surfaces in indefinite space forms with arbitrary codimention and arbitrary index. Publ. Math. Debr. 78, 485–503 (2011)

    Article  Google Scholar 

  7. 7.

    Dussan, M.P., Filho, A.P.F., Magid, M.: The Björling problem for timelike minimal surfaces in \(\mathbb{R}^4_1\). Annali di Matematica 196(4), 1231–1249 (2017)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Dussan, M.P., Magid, M.: The Björling problem for timelike surfaces in \(\mathbb{R}^4_2\). J. Geom. Phys. 73, 187–199 (2013)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Ganchev, G., Kanchev, K.: Explicit solving of the system of natural PDE’s of minimal surfaces in the four-dimensional Euclidean space. C. R. Acad. Bulgare Sci. 67(5), 623–628 (2014)

    MathSciNet  MATH  Google Scholar 

  10. 10.

    Ganchev, G., Kanchev, K.: Explicit solving of the system of natural PDE’s of minimal space-like surfaces in Minkowski space-time. C. R. Acad. Bulgare Sci. 70(6), 761–768 (2017)

    MathSciNet  MATH  Google Scholar 

  11. 11.

    Ganchev, G., Kanchev, K.: Relation between the maximal space-like surfaces in \(\mathbb{R}^4_2\) and the maximal space-like surfaces in \(\mathbb{R}^3_1\). C. R. Acad. Bulgare Sci. 72(6), 711–719 (2019)

    MathSciNet  MATH  Google Scholar 

  12. 12.

    Ganchev, G., Kanchev, K.: Canonical Weierstrass representations for maximal space-like surfaces in \(\mathbb{R}^4_2\). arXiv:1906.09935v1

  13. 13.

    Konderak, J.: A Weierstrass representation theorem for Lorentz surfaces. Complex Var. 50(5), 319–332 (2005)

    MathSciNet  MATH  Google Scholar 

  14. 14.

    Patty, V.: A generalized Weierstrass representation of Lorentzian surfaces in \(\mathbb{R}^{2,2}\) and applications. Int. J. Geom. Methods Mod. Phys. 13(6), 1650074 (2016)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Sakaki, M.: Spacelike maximal surfaces in 4-dimensional space forms of index 2. Tokyo J. Math. 25, 295–306 (2002)

    MathSciNet  Article  Google Scholar 

Download references

Acknowledgements

The second author is partially supported by the National Science Fund, Ministry of Education and Science of Bulgaria under contract DN 12/2.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Velichka Milousheva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kassabov, O., Milousheva, V. Weierstrass Representations of Lorentzian Minimal Surfaces in \(\mathbb R^4_2\). Mediterr. J. Math. 17, 199 (2020). https://doi.org/10.1007/s00009-020-01636-x

Download citation

Keywords

  • Lorentzian surfaces
  • Weierstrass formulas
  • Canonical principal parameters
  • Minimal surfaces

Mathematics Subject Classification

  • Primary 53B30
  • Secondary 53A10
  • 53A35