The \(D_{w}\)-Laguerre–Hahn Forms of Class Zero


We carry out the complete description of the \(D_{w}\)-Laguerre–Hahn forms of class zero, where \(D_{w}\) is the divided difference operator. Essentially, four canonical cases appear. Some particular cases which refer to well-known orthogonal sequences are exhibited.

This is a preview of subscription content, log in to check access.


  1. 1.

    Abdelkarim, F.: Les polynômes \(D_{w}\)-classiques et les polynômes \(D_{w}\)-Laguerre–Hahn. Université de Tunis II, Thèse de Doctorat (1998)

  2. 2.

    Abdelkarim, F., Maroni, P.: The \(D_{w}\)-classical polynomials. Results Math. 32, 1–28 (1997)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Alaya, J., Maroni, P.: Symmetric Laguerre–Hahn forms of class \(s=1\). Integral Transforms Spec. Funct. 4, 301–320 (1996)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bouakkaz, H.: Les polynômes orthogonaux de Laguerre–Hahn de classe zéro. Thèse de Doctorat. Université Pierre et Marie Curie, Paris (1990)

  5. 5.

    Bouakkaz, H., Maroni, P.: Description des polynômes orthogonaux de Laguerre-Hahn de classe zéro. In: Brezinski, C., Gori, L., Ronveaux, A. (eds.) Orthoggonals Polynomials and Their Applications. Annals of Computation and Applied Mathematics, vol. 9, pp. 189–194. J. C. Baltzer AG, Basel (1991)

    Google Scholar 

  6. 6.

    Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach, New York (1978)

    Google Scholar 

  7. 7.

    Dini, J.: Sur les formes linéaires et polynômes oerthogonaux de Laguerre-Hahn. Université Pierre et Marie Curie, Paris VI, Thèse de Doctorat (1988)

  8. 8.

    Dzoumba, J.: Sur les polynômes de Laguerre–Hahn. Université Pierre et Marie Curie, Paris VI, Thèse de troisiéme cycle (1985)

  9. 9.

    Foupouagnigni, M., Marcellan, F.: Characterization of the \(D_{w}\)-Laguerre–Hahn Functionals. J. Differ. Equ. Appl. 8(8), 689–717 (2002)

    Article  Google Scholar 

  10. 10.

    Foupouagnigni, M.: Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator, fourth-order difference equation for the rth associated and the Laguerre–Freud equations for the recurrence coefficients. UniversitNationale du Bnin, Bnin (1998). Ph.D. Thesis

    Google Scholar 

  11. 11.

    Guerfi, M.: Les polynômes de Laguerre–Hahn affines discrets, Thèse de troisième cycle. Univ. P. et M. Curie, Paris (1988)

    Google Scholar 

  12. 12.

    Magnus, A.: Riccati acceleration of Jacobi continued fractions and Laguerre–Hahn orthogonal polynomials. In: Padé Approximation and its applications. Lecture Notes in Math, vol. 1071, 1984, pp. 213–230. Springer, Berlin (1983)

  13. 13.

    Maroni, P., Mejri, M.: The symmetric \(D_w\)-semiclassical orthogonal polynomials of class one. Numer. Algorithms 49, 251–282 (2008)

    MathSciNet  Article  Google Scholar 

  14. 14.

    Maroni, P.: An introduction to second degree forms. Adv Comput Math 3, 59–88 (1995)

    MathSciNet  Article  Google Scholar 

  15. 15.

    Maroni, P.: Une théorie algébrique des polynômes orthogonaux. Application aux polynômes orthogonaux semi-classiques. In: Brezinski, C., et al (eds.) Orthogonal polynomials and their applications. IMACS, Ann. Comput. Appl. Math. vol. 9, pp. 95–130. Baltzer, Basel (1991)

  16. 16.

    Zaatra, M.: Laguerre–Freud equations associated with the \(H_{q}\)-semi-classical forms of class one. Filomat 32(19), 6769–6787 (2018)

    MathSciNet  Article  Google Scholar 

Download references


Thanks are due to the referee for his valuable comments and useful suggestions and for his careful reading of the manuscript.

Author information



Corresponding author

Correspondence to M. Sghaier.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sghaier, M., Zaatra, M. The \(D_{w}\)-Laguerre–Hahn Forms of Class Zero. Mediterr. J. Math. 17, 185 (2020).

Download citation


  • Orthogonal polynomials
  • Laguerre–Hahn forms
  • Difference operator

Mathematics Subject Classification

  • 33C45
  • 42C05