Partial Inverse Problems for Dirac Operators on Star Graphs


Partial inverse problems for Dirac operators on star graphs are studied. We consider Dirac operators on the graphs, and prove that the potential on one edge is uniquely determined by part of its spectra and part of the potential provided that the potentials on the remaining edges are given a priori. This extends the results of Horváth to Dirac operators on the graphs.

This is a preview of subscription content, log in to check access.


  1. 1.

    Berkolaiko, G., Kuchment, P.: Introduction to quantum graphs. Am. Math. Soc. (2013)

  2. 2.

    Bondarenko, N.P.: A partial inverse problem for the differential pencil on a star-shaped graph. Results Math. 72, 1933–1942 (2017)

    MathSciNet  Article  Google Scholar 

  3. 3.

    Bondarenko, N.P.: Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with mixed boundary conditions. J. Inverse Ill-Posed Probl. 26(1), 1–12 (2018)

    MathSciNet  Article  Google Scholar 

  4. 4.

    Bondarenko, N.P.: A 2-edge partial inverse problemfor the sturm-liouville operatorswith singular potentials on a star-shaped graph. Tamkang J. Math. 49(1), 49–66 (2018)

    MathSciNet  Article  Google Scholar 

  5. 5.

    Bondarenko, N.P.: A partial inverse problem for the Sturm-Liouville operator on a star-shaped graph. Anal. Math. Phys. 8, 155–168 (2018)

    MathSciNet  Article  Google Scholar 

  6. 6.

    Bondarenko, N.P., Yang, C.F.: Partial inverse problems for the Sturm-Liouville operator on a star-shaped graph with different edge lengths. Results Math. (2018).

  7. 7.

    Bondarenko, N.P.: Inverse problem for the differential pencil on an arbitrary graph with partial information given on the coefficients. Anal. Math. Phys. 9, 1393–1409 (2019)

    MathSciNet  Article  Google Scholar 

  8. 8.

    Bolte, J., Harrison, J.: Spectral statistics for the dirac operator on graphs. J. Phys. A Math. Gen. 36, 2747–2769 (2003)

    MathSciNet  Article  Google Scholar 

  9. 9.

    Bulla, W., Trenkler, T.: The free dirac operator on compact and noncompact graphs. J. Math. Phys. 31, 1157–1163 (1990)

    MathSciNet  Article  Google Scholar 

  10. 10.

    Gesztesy, F., Simon, B.: Inverse spectral analysis with partial information on the potential II: the case of discrete spectrum. Trans. Am. Math. Soc. 352, 2765–2787 (2000)

    MathSciNet  Article  Google Scholar 

  11. 11.

    Hochstadt, H., Lieberman, B.: An inverse Sturm-Liouville problem with mixed given data. SIAM J. Appl. Math. 34, 676–680 (1978)

    MathSciNet  Article  Google Scholar 

  12. 12.

    Horváth, M.: On the inverse spectral theory of Schrödinger and Dirac operators. Trans. Am. Math. Soc. 353, 4155–4171 (2001)

    Article  Google Scholar 

  13. 13.

    Hu, Y.T., Bondarenko, N.P., Shieh, C.T., Yang, C.F.: Traces and inverse nodal problems for Dirac-type integro-differential operators on a graph. Appl. Math. Comput. 363, 124606 (2019).

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Kottos, T., Smilansky, U.: Quantum chaos on graphs. Phys. Rev. Lett. 79, 4794–4797 (1997)

    Article  Google Scholar 

  15. 15.

    Kuchment, P.: Graph models for waves in thin structures. Waves Random Media 12(4), R1–R24 (2002)

    MathSciNet  Article  Google Scholar 

  16. 16.

    Levin, B.J.A.: Distribution of zeros of entire functions. Am. Math. Soc. (1980)

  17. 17.

    Levinson, N.: Gap and Density Theorems. AMS Colloquium Publications, New York (1940)

    Google Scholar 

  18. 18.

    Liu, D.Q., Yang, C.F.: Horváth-type theorems on a star graph with mixed boundary conditions. Results Math. (2020).

  19. 19.

    Malamud, M.M.: Uniqueness questions in inverse problems for systems of differential equations on a finite interval. Trans. Moscow Math. Soc. 60, 173–224 (1999)

    Google Scholar 

  20. 20.

    Montroll, E.W.: Quantum theory on a network, I. A solvable model whose wavefunctions are elementary functions. J. Math. Phys. 11, 635–648 (1970)

    Article  Google Scholar 

  21. 21.

    Pokorny, Y.V., Penkin, O.M., Pryadiev, V.L., et al.: Differential equations on geometrical graphs. Fizmatlit, Moscow. (2004). (Russian)

  22. 22.

    Ruedenberg, K., Scherr, C.W.: Free-electron network model for conjugated systems. I. Theory. J. Chem. Phys. 21(9), 1565–1581 (1953)

    Article  Google Scholar 

  23. 23.

    Wang, Y.P., Shieh, C.T.: Inverse problems for Sturm-Liouville operators on a star-shaped graph with mixed spectral data. Appl. Anal. (2019).

  24. 24.

    Yang, C.F.: Inverse spectral problems for the Sturm-Liouville operator on a \(d\)-star graph. J. Math. Anal. Appl. 365, 742–749 (2010)

    MathSciNet  Article  Google Scholar 

  25. 25.

    Yang, C.F., Huang, Z.Y.: Spectral asymptotics and regularized traces for Dirac operators on a star-shaped graph. Appl. Anal. 91(9), 1717–1730 (2012)

    MathSciNet  Article  Google Scholar 

  26. 26.

    Yang, C.F., Yang, X.P.: Uniqueness theorems from partial information of the potential on a graph. J. Inverse Ill-Posed Probl. 19, 631–641 (2011)

    MathSciNet  Article  Google Scholar 

  27. 27.

    Yurko, V.A.: Inverse spectral problems for differential operators on spatial networks. Russ. Math. Surv. 71(3), 539–584 (2016)

    MathSciNet  Article  Google Scholar 

Download references


The authors wish to express their sincere appreciation to the anonymous reviewers for their careful work and thoughtful suggestions that have helped improve this paper substantially. In addition, the research work was supported by the National Natural Science Foundation of China (11871031 and 11611530682).

Author information



Corresponding author

Correspondence to Dai-Quan Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, DQ., Yang, CF. Partial Inverse Problems for Dirac Operators on Star Graphs. Mediterr. J. Math. 17, 180 (2020).

Download citation


  • Partial inverse problem
  • Star graph
  • Dirac operator
  • Horváth-type theorem

Mathematics Subject Classification

  • 34A55
  • 34B45
  • 34L40
  • 47E05