Skip to main content
Log in

On the Exponential Diophantine Equation \((m^2+m+1)^x+m^y=(m+1)^z \)

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \(m \ge 1\) be a positive integer. We show that the exponential Diophantine equation \( (m^2+m+1)^x+m^y=(m+1)^z \) has no positive integer solutions other than \((x,y,z)=(1,1,2)\) when \(m \not \in \{1, 2, 3 \}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bertók, C.: The complete solution of the Diophantine equation \((4m^2+1)^x+(5m^2-1)^y = (3m)^z\). Period Math Hung. 72, 37–42 (2016)

    Article  MathSciNet  Google Scholar 

  2. Bugeaud, Y.: Linear forms in two m-adic logarithms and applications to Diophantine problems. Compos. Math. 132(2), 137–158 (2002)

    Article  MathSciNet  Google Scholar 

  3. Cao, Z.: A note on the Diophantine equation \(a^x+ b^y = c^z\). Acta Arith. 91, 85–93 (1999)

    Article  MathSciNet  Google Scholar 

  4. Fu, R., Yang, H.: On the exponential diophantine equation \(\left( am^{2}+1\right) ^{x}+\left( bm^{2}-1\right) ^{y}=(cm)^{z}\) with \(c \mid m\). Period Math Hung. 75, 143–149 (2017)

    Article  Google Scholar 

  5. Jeśmanowicz, L.: Some remarks on Pythagorean numbers. Wiadom Mat. 1, 196–202 (1955/1956)

  6. Kızıldere, E., Miyazaki, T., Soydan, G.: On the Diophantine equation \(((c+1)m^{2}+1)^{x}+(cm^{2}-1)^{y}=(am)^z\). Turk. J. Math. 42, 2690–2698 (2018)

    Article  Google Scholar 

  7. Le, M.: On Cohn’s conjecture concerning the Diophantine equation \( x^2+2^m=y^n\). Arch. Math. 78, 26–35 (2002)

    Article  Google Scholar 

  8. Le, M., Soydan, G.: An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples. Period Math Hung. (2019). https://doi.org/10.1007/s10998-019-00295-0

    Article  MATH  Google Scholar 

  9. Le, M., Scott, R., Styer, R.: A survey on the ternary purely exponential diophantine equation \(a^x + b^y = c^z\). Surv. Math. Appl. 14, 109–140 (2019)

    MathSciNet  MATH  Google Scholar 

  10. Ma, M., Chen, Y.: Jeśmanowicz’ conjecture on Pythagorean triples. Bull. Aust. Math. Soc. 96, 30–35 (2017)

    Article  MathSciNet  Google Scholar 

  11. Miyazaki, T.: Exceptional cases of Terai’s conjecture on Diophantine equations. Arch Math. 95, 519–527 (2010)

    Article  MathSciNet  Google Scholar 

  12. Miyazaki, T.: Generalizations of classical results on Jeśmanowicz’ conjecture concerning Pythagorean triples. J. Number Theory 133, 583–595 (2013)

    Article  MathSciNet  Google Scholar 

  13. Miyazaki, T., Terai, N.: On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples II. Acta Math. Hung. 147, 286–293 (2015)

    Article  Google Scholar 

  14. Nagell, T.: Sur une classe d’équations exponentielles. Ark Mat. 3(4), 569–582 (1958)

    Article  MathSciNet  Google Scholar 

  15. Ribenboim, P.: Catalan’s Conjecture: Are 8 and 9 the Only Consecutive Powers?. Academic Press, Boston (1994)

    MATH  Google Scholar 

  16. Scott, R.: On the equations \( p^x-b^y=c \) and \( a^x+b^y=c^z. \). J. Number Theory 44, 153–165 (1993)

    Article  MathSciNet  Google Scholar 

  17. Soydan, G., Demirci, M., Cangül, I.N., Togbé, A.: On the conjecture of Jeśmanowicz. Int. J. Appl. Math. Stat. 56, 46–72 (2017)

    MathSciNet  Google Scholar 

  18. Su, J., Li, X.: The exponential diophantine equation \((4m^2+1)^x+(5m^2-1)^y = (3m)^z\). Abstr. Appl. Anal. 1–5 (2014)

  19. Terai, N.: The Diophantine equation \(a^x+b^y=c^z\). Proc. Jpn. Acad. Ser. A Math. Sci. 56, 22–26 (1994)

    Article  MathSciNet  Google Scholar 

  20. Terai, N.: Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations. Acta Arith. 90, 17–35 (1999)

    Article  MathSciNet  Google Scholar 

  21. Terai, N.: On the exponential Diophantine equation \((4m^2+1)^x+(5m^2-1)^y = (3m)^z\). Int. J. Algebra 6, 1135–1146 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Terai, N.: On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples. J. Number Theory 141, 316–323 (2014)

    Article  MathSciNet  Google Scholar 

  23. Terai, N., Hibino, T.: On the exponential Diophantine equation \((12m^2 +1)^x +(13m^2 -1)^y = (5m)^z\). Int. J. Algebra 9, 261–272 (2015)

    Article  Google Scholar 

  24. Terai, N., Hibino, T.: On the Exponential Diophantine Equation \(a^x + lb^y = c^z\). Int. J. Algebra 10, 393–403 (2016)

    Article  Google Scholar 

  25. Terai, N., Hibino, T.: On the exponential Diophantine equation \((3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z\). Period Math Hung. 74, 227–234 (2017)

    Article  Google Scholar 

  26. Uchiyama, S.: On the Diophantine equation \( 2^x=3^y+13^z.\). Math. J. Okayama Univ. 19, 31–38 (1976)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

I would like to thank the referees for their careful reading and valuable remarks.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Alan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alan, M. On the Exponential Diophantine Equation \((m^2+m+1)^x+m^y=(m+1)^z \). Mediterr. J. Math. 17, 189 (2020). https://doi.org/10.1007/s00009-020-01613-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01613-4

Keywords

Mathematics Subject Classification

Navigation