Abstract
Let \(m \ge 1\) be a positive integer. We show that the exponential Diophantine equation \( (m^2+m+1)^x+m^y=(m+1)^z \) has no positive integer solutions other than \((x,y,z)=(1,1,2)\) when \(m \not \in \{1, 2, 3 \}\).
Similar content being viewed by others
References
Bertók, C.: The complete solution of the Diophantine equation \((4m^2+1)^x+(5m^2-1)^y = (3m)^z\). Period Math Hung. 72, 37–42 (2016)
Bugeaud, Y.: Linear forms in two m-adic logarithms and applications to Diophantine problems. Compos. Math. 132(2), 137–158 (2002)
Cao, Z.: A note on the Diophantine equation \(a^x+ b^y = c^z\). Acta Arith. 91, 85–93 (1999)
Fu, R., Yang, H.: On the exponential diophantine equation \(\left( am^{2}+1\right) ^{x}+\left( bm^{2}-1\right) ^{y}=(cm)^{z}\) with \(c \mid m\). Period Math Hung. 75, 143–149 (2017)
Jeśmanowicz, L.: Some remarks on Pythagorean numbers. Wiadom Mat. 1, 196–202 (1955/1956)
Kızıldere, E., Miyazaki, T., Soydan, G.: On the Diophantine equation \(((c+1)m^{2}+1)^{x}+(cm^{2}-1)^{y}=(am)^z\). Turk. J. Math. 42, 2690–2698 (2018)
Le, M.: On Cohn’s conjecture concerning the Diophantine equation \( x^2+2^m=y^n\). Arch. Math. 78, 26–35 (2002)
Le, M., Soydan, G.: An application of Baker’s method to the Jeśmanowicz’ conjecture on primitive Pythagorean triples. Period Math Hung. (2019). https://doi.org/10.1007/s10998-019-00295-0
Le, M., Scott, R., Styer, R.: A survey on the ternary purely exponential diophantine equation \(a^x + b^y = c^z\). Surv. Math. Appl. 14, 109–140 (2019)
Ma, M., Chen, Y.: Jeśmanowicz’ conjecture on Pythagorean triples. Bull. Aust. Math. Soc. 96, 30–35 (2017)
Miyazaki, T.: Exceptional cases of Terai’s conjecture on Diophantine equations. Arch Math. 95, 519–527 (2010)
Miyazaki, T.: Generalizations of classical results on Jeśmanowicz’ conjecture concerning Pythagorean triples. J. Number Theory 133, 583–595 (2013)
Miyazaki, T., Terai, N.: On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples II. Acta Math. Hung. 147, 286–293 (2015)
Nagell, T.: Sur une classe d’équations exponentielles. Ark Mat. 3(4), 569–582 (1958)
Ribenboim, P.: Catalan’s Conjecture: Are 8 and 9 the Only Consecutive Powers?. Academic Press, Boston (1994)
Scott, R.: On the equations \( p^x-b^y=c \) and \( a^x+b^y=c^z. \). J. Number Theory 44, 153–165 (1993)
Soydan, G., Demirci, M., Cangül, I.N., Togbé, A.: On the conjecture of Jeśmanowicz. Int. J. Appl. Math. Stat. 56, 46–72 (2017)
Su, J., Li, X.: The exponential diophantine equation \((4m^2+1)^x+(5m^2-1)^y = (3m)^z\). Abstr. Appl. Anal. 1–5 (2014)
Terai, N.: The Diophantine equation \(a^x+b^y=c^z\). Proc. Jpn. Acad. Ser. A Math. Sci. 56, 22–26 (1994)
Terai, N.: Applications of a lower bound for linear forms in two logarithms to exponential Diophantine equations. Acta Arith. 90, 17–35 (1999)
Terai, N.: On the exponential Diophantine equation \((4m^2+1)^x+(5m^2-1)^y = (3m)^z\). Int. J. Algebra 6, 1135–1146 (2012)
Terai, N.: On Jeśmanowicz’ conjecture concerning primitive Pythagorean triples. J. Number Theory 141, 316–323 (2014)
Terai, N., Hibino, T.: On the exponential Diophantine equation \((12m^2 +1)^x +(13m^2 -1)^y = (5m)^z\). Int. J. Algebra 9, 261–272 (2015)
Terai, N., Hibino, T.: On the Exponential Diophantine Equation \(a^x + lb^y = c^z\). Int. J. Algebra 10, 393–403 (2016)
Terai, N., Hibino, T.: On the exponential Diophantine equation \((3pm^2-1)^x+(p(p-3)m^2+1)^y=(pm)^z\). Period Math Hung. 74, 227–234 (2017)
Uchiyama, S.: On the Diophantine equation \( 2^x=3^y+13^z.\). Math. J. Okayama Univ. 19, 31–38 (1976)
Acknowledgements
I would like to thank the referees for their careful reading and valuable remarks.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Alan, M. On the Exponential Diophantine Equation \((m^2+m+1)^x+m^y=(m+1)^z \). Mediterr. J. Math. 17, 189 (2020). https://doi.org/10.1007/s00009-020-01613-4
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/s00009-020-01613-4