Skip to main content
Log in

Symmetric Polynomials in the Free Metabelian Lie Algebras

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

Let \(K[X_n]\) be the commutative polynomial algebra in the variables \(X_n=\{x_1,\ldots ,x_n\}\) over a field K of characteristic zero. A theorem from undergraduate course of algebra states that the algebra \(K[X_n]^{S_n}\) of symmetric polynomials is generated by the elementary symmetric polynomials which are algebraically independent over K. In the present paper, we study a noncommutative and nonassociative analogue of the algebra \(K[X_n]^{S_n}\) replacing \(K[X_n]\) with the free metabelian Lie algebra \(F_n\) of rank \(n\ge 2\) over K. It is known that the algebra \(F_n^{S_n}\) is not finitely generated, but its ideal \((F_n')^{S_n}\) consisting of the elements of \(F_n^{S_n}\) in the commutator ideal \(F_n'\) of \(F_n\) is a finitely generated \(K[X_n]^{S_n}\)-module. In our main result, we describe the generators of the \(K[X_n]^{S_n}\)-module \((F_n')^{S_n}\) which gives the complete description of the algebra \(F_n^{S_n}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bahturin, Yu.A.: Identical Relations in Lie Algebras (Russian). Nauka, Moscow (1985). (Translation: VNU Science Press, Utrecht, 1987)

  2. Bergeron, N., Reutenauer, C., Rosas, M., Zabrocki, M.: Invariants and coinvariants of the symmetric groups in noncommuting variables. Can. J. Math. 60(2), 266–296 (2008)

    Article  MathSciNet  Google Scholar 

  3. Bryant, R.M.: On the fixed points of a finite group acting on a free Lie algebra. J. Lond. Math. Soc. 43(2), 215–224 (1991)

    Article  MathSciNet  Google Scholar 

  4. Bryant, R.M., Papistas, A.I.: On the fixed points of a finite group acting on a relatively free Lie algebra. Glasg. Math. J. 42(2), 167–181 (2000)

    Article  MathSciNet  Google Scholar 

  5. Dicks, W., Formanek, E.: Poincaré series and a problem of S. Montgomery. Linear Multilinear Algebra 12, 21–30 (1982)

    Article  MathSciNet  Google Scholar 

  6. Domokos, M., Drensky, V.: Rationality of Hilbert series in noncommutative invariant theory. Int. J. Algebra Comput. 27(7), 831–848 (2017)

    Article  MathSciNet  Google Scholar 

  7. Drensky, V.: Fixed algebras of residually nilpotent Lie algebras. Proc. Am. Math. Soc. 120(4), 1021–1028 (1994)

    Article  MathSciNet  Google Scholar 

  8. Drensky, V., Fındık, Ş.: Classical invariant theory for free metabelian Lie algebras. J. Lie Theory 29, 1071–1092 (2019)

    MathSciNet  MATH  Google Scholar 

  9. Fındık, Ş., Öǧüşlü, N.Ş.: Palindromes in the free metabelian Lie algebras. Int. J. Algebra Comput. 29(5), 885–891 (2019)

    Article  MathSciNet  Google Scholar 

  10. Gelfand, I.M., Krob, D., Lascoux, A., Leclerc, B., Retakh, V.S., Thibon, J.-Y.: Noncommutative symmetric functions. Adv. Math. 112(2), 218–348 (1995)

    Article  MathSciNet  Google Scholar 

  11. Hilbert, D.: Mathematische Probleme. Göttinger Nachrichten 253–297, (1900) Archiv der Mathematik und Physik (3) 1, 44–63, 213–237 (1901). Translation: Bull. Amer. Math. Soc. 8(10), 437–479 (1902)

  12. Kharchenko, V.K.: Algebra of invariants of free algebras (Russian). Algebra i Logika 17, 478–487 (1978). (Translation: Algebra and Logic 17, 316–321 (1978))

  13. Koryukin, A.N.: Noncommutative invariants of reductive groups (Russian). Algebra i Logika 23(4), 419–429 (1984). (Translation: Algebra Logic 23, 290–296 (1984))

  14. Noether, E.: Der Endlichkeitssatz der Invarianten endlicher Gruppen. Math. Ann. 77, 89–92 (1916). (Reprinted in “Gesammelte Abhandlungen. Collected Papers”, Springer-Verlag, Berlin-Heidelberg-New York-Tokyo, 181-184, 1983)

    Article  MathSciNet  Google Scholar 

  15. Shmel’kin, , A.L.: Wreath products of Lie algebras and their application in the theory of groups (Russian). Trudy Moskov. Mat. Obshch. 29, 247–260 (1973). (Translation: Trans. Moscow Math. Soc. 29, 239–252 (1973))

  16. Weyl, H.: The Classical Groups, Their Invariants and Representations. Princeton University Press, Princeton (1946). (New Edition, 1997)

    MATH  Google Scholar 

  17. Wolf, M.C.: Symmetric functions of non-commutative elements. Duke Math. J. 2(4), 626–637 (1936)

    Article  MathSciNet  Google Scholar 

  18. Zelmanov, E.I.: On Engel Lie algebras (Russian). Sibirsk. Mat. Zh. 29(5), 112–117 (1988). (Translation: Siberian Math. J. 29, 777–781 (1988))

Download references

Acknowledgements

The authors are very grateful to the anonymous referee for the careful reading of the manuscript and the valuable suggestions for the improvement of the exposition. The research of the first named author was partially supported by Grant KP-06-N-32/1 “Groups and Rings—Theory and Applications” of the Bulgarian National Science Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Şehmus Fındık.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Drensky, V., Fındık, Ş. & Öüşlü, N.Ş. Symmetric Polynomials in the Free Metabelian Lie Algebras. Mediterr. J. Math. 17, 151 (2020). https://doi.org/10.1007/s00009-020-01582-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01582-8

Keywords

Mathematics Subject Classification

Navigation