Skip to main content
Log in

On the Existence, Uniqueness and Regularity of Solutions for a Class of MHD Equations of Non-Newtonian Type

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we consider a steady MHD fluid model of non-Newtonian type in a smooth bounded domain \(\Omega \in {\mathbb {R}}^3\). Using the iterative method, under the condition that the external force is small in a suitable sense, we proved the existence of \(C^{1,\gamma }({\bar{\Omega }})\times W^{2,r}(\Omega )\) solutions of the systems for the exponent \(1<p<2\) and we show that this solution is unique in case \(\frac{6}{5}<p<2\). Moreover, we also proved the higher regularity properties of this solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Biskamp, D.: Magnetohydrodynamical Turbulence. Cambridge University Press, Cambridge (2003)

    Book  Google Scholar 

  2. Chandrasekhar, S.: Hydrodynamic and Hydromagnetic Stability. Dover, New York (1981)

    MATH  Google Scholar 

  3. Ladyzhenskaya, O.A., Solonnikov, V.: Solution of some nonstationary magnetohydrodynamical problems for incompressible fluid. Trudy Steklov Math. Inst. 69, 115–173 (1960)

    Google Scholar 

  4. Duvaut, G., Lions, J.L.: Inéquations en thermoélasticité et magnétohydrodynamique. Arch. Ration. Mech. Anal. 46, 241–279 (1972)

    Article  Google Scholar 

  5. Sermange, M., Temam, R.: Some mathematical questions related to the MHD equations. Commun. Pure Appl. Math. 36, 635–664 (1983)

    Article  MathSciNet  Google Scholar 

  6. Chen, Q., Miao, C., Zhang, Z.: The Beale–Kato–Majda criterion for the 3D magneto-hydrodynamics equations. Commun. Math. Phys. 275, 861–872 (2007)

    Article  MathSciNet  Google Scholar 

  7. He, C., Xin, Z.: Partial regularity of suitable weak solutions to the incompressible magne-tohydrodynamic equations. J. Funct. Anal. 227, 113–152 (2005)

    Article  MathSciNet  Google Scholar 

  8. Cao, C., Wu, J.: Global regularity for the 2D MHD equations with mixed partial dissipation and magnetic diffusion. Adv. Math. 226, 1803–1822 (2011)

    Article  MathSciNet  Google Scholar 

  9. Lin, F., Zhang, P.: Global small solutions to an MHD-type system: the three-dimensional case. Commun. Pure Appl. Math. 67, 531–580 (2014)

    Article  MathSciNet  Google Scholar 

  10. Gerbeau, J.-F., Le Bris, C., Lelièvre, T.: Mathematical Methods for the Magnetohydrodynamics of Liquid Metals. Oxford University Press, New York (2006)

    Book  Google Scholar 

  11. Cao, C., Wu, J.: Two regularity criteria for the 3D MHD equations. J. Differ. Equ. 248, 2263–2274 (2010)

    Article  MathSciNet  Google Scholar 

  12. He, C., Wang, Y.: On the regularity criteria for weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 238, 1–17 (2007)

    Article  MathSciNet  Google Scholar 

  13. He, C., Xin, Z.: On the regularity of weak solutions to the magnetohydrodynamic equations. J. Differ. Equ. 213, 235–254 (2005)

    Article  MathSciNet  Google Scholar 

  14. Ladyzhensakya, O.A.: The Mathematical Theory of Viscous Incompressible Flow. Gordon and Breach, New York (1969)

    Google Scholar 

  15. Ladyzhensakya, O.A.: New equations for description of motion of viscous incompressible fluids and solvability in the large of boundary value problems for them. Seminar in Mathematics V. A. Steklov Mathematical Institute, Vol. 102, Boundary value problems of mathematical physics, Part V, Providence, Rhode Island, AMS (1970)

  16. Samokhin, V.N.: On a system of equations in the magnetohydrodynamics of nonlinearly viscous media. Differ. Equ. 27, 628–636 (1991)

    MathSciNet  MATH  Google Scholar 

  17. Gunzburger, M.D., Ladyzhenskaya, O.A., Peterson, J.S.: On the global unique solvability of initial-boundary value problems for the coupled modified Navier–Stokes and Maxwell equations. J. Math. Fluid Mech. 6, 462–482 (2004)

    Article  MathSciNet  Google Scholar 

  18. Sohr, H.: The Navier–Stokes Equations: An Elementary Functional Analytic Approach. Birkhäuser, Basel (2001)

    Book  Google Scholar 

  19. Parés, C.: Existence, uniqueness and regularity of solution of the equations of a turbulence model for incompressible fluids. Appl. Anal. 43(3–4), 245–296 (1992)

    Article  MathSciNet  Google Scholar 

  20. Crispo, F., Grisanti, C.: On the existence, uniqueness and \(C^{1,\gamma }({\bar{\Omega }})\cap W^{2,2}(\Omega )\) regularity for a class of shear-thinning fluids. J. Math. Fluid Mech. 10, 455–487 (2008)

    Article  MathSciNet  Google Scholar 

  21. Ebmeyer, E.: Regularity in Sobolev spaces of steady flows of fluids with shear dependent viscosity. Math. Methods Appl. Sci. 29, 1687–1707 (2006)

    Article  MathSciNet  Google Scholar 

  22. Crispo, F., Grisanti, C.R.: On the \(C^{1,\gamma }({\bar{\Omega }})\cap W^{2,2}(\Omega )\) regularity for a class of electro-rheological fluids. J. Math. Anal. Appl. 356, 119–132 (2009)

    Article  MathSciNet  Google Scholar 

  23. Kufner, A., John, O., Fučk, S.: Function spaces. In: Monographs and Textbooks on Mechanics of Solids and Fluids; Mechanics: Analysis. Noordhoff International Publishing, Prague (1977)

  24. Galdi, G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. I, p. 38. Springer, Berlin (1994)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the fund of the “Thirteen Five” Scientific and Technological Research Planning Project of the Department of Education of Jilin Province(Grant no. JJKH20200727KJ ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changjia Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Wang, C. On the Existence, Uniqueness and Regularity of Solutions for a Class of MHD Equations of Non-Newtonian Type. Mediterr. J. Math. 17, 144 (2020). https://doi.org/10.1007/s00009-020-01570-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01570-y

Mathematics Subject Classification

Keywords

Navigation